Skip to main content
Log in

An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

India at present is one of the leading countries in antimicrobial drug production and use, leading to increasing antimicrobial resistance (AMR) and public health problems. Attention has mainly been focused on the human and food animals’ contribution to AMR neglecting the potential contribution of the perceptibly degraded aquatic environment in India. The paper reviews the available published literature in India on the prevalence of antimicrobial residues and their dissemination pathways in wastewater of pharmaceutical industries, sewage treatment plants, hospitals, riverine, community pond water, and groundwater. The prevalence of antimicrobial residue concentration, pathogenic and non-pathogenic bacteria antimicrobial resistant bacteria (ARB), their drug resistance levels, and their specific antimicrobial resistant genes (ARGs) occurring in various water matrices of India have been comprehensively depicted from existing literature. The concentration of some widely used antimicrobials recorded from the sewage treatment plants and hospital wastewater and rivers in India has been compared with other countries. The ecotoxicological risk posed by these antimicrobials in the various water matrices in India indicated high hazard quotient (HQ) values for pharmaceutical effluents, hospital effluents, and river water. The degraded aquatic environment exhibited the selection of a wide array of co-existent resistant genes for antibiotics and metals. The review revealed improper use of antibiotics and inadequate wastewater treatment as major drivers of AMR contaminating water bodies in India and suggestion for containing the challenges posed by AMR in India has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

A comprehensive search was conducted through PubMed, Science Direct Google Scholar, Research Gate, and Google for articles relevant to the review topic. It included journal articles, reports, books, and other authentic national and international published materials. From these articles we extracted, highlighted, and compared appropriate information for the preparation of our paper.

References

  • Ahammad, Z. S., Sreekrishnan, T. R., Hands, C. L., Knapp, C. W., & Graham, D. W. (2014). Increased waterborne bla NDM-1 resistance gene abundances associated with seasonal human pilgrimages to the Upper Ganges River. Environmental Science & Technology, 48(5), 3014–3020. https://doi.org/10.1021/es405348h

    Article  CAS  Google Scholar 

  • Akiba, M., Senba, H., Otagiri, H., Prabhasankar, V. P., Taniyasu, S., Yamashita, N., Lee, K., Yamamoto, T., Tsutsui, T., & Joshua, D. I. (2015). Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India. Ecotoxicology and Environmental Safety, 115, 203–208. https://doi.org/10.1016/j.ecoenv.2015.02.018

    Article  CAS  Google Scholar 

  • Anand, U., Reddy, B., Singh, V. K., Singh, A. K., Kesari, K. K., Tripathi, P., et al. (2021). Potential environmental and human health risks caused by antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSW) landfill. Antibiotics, 10(4), 374. https://doi.org/10.3390/antibiotics10040374

    Article  CAS  Google Scholar 

  • Anumol, T., Vijayanandan, A., Park, M., Philip, L., & Snyder, S. A. (2016). Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India. Environment International, 92, 33–42. https://doi.org/10.1016/j.envint.2016.03.022

    Article  CAS  Google Scholar 

  • Archana, G., Dhodapkar, R., & Kumar, A. (2016). Offline solid-phase extraction for preconcentration of pharmaceuticals and personal care products in environmental water and their simultaneous determination using the reversed phase high-performance liquid chromatography method. Environmental Monitoring and Assessment, 188(9), 1–10. https://doi.org/10.1007/s10661-016-5510-1

    Article  CAS  Google Scholar 

  • Azam, M., Jan, A. T., & Haq, Q. M. (2016). Bla CTX-M-152, a novel variant of CTX-M-group-25, identified in a study performed on the prevalence of multidrug resistance among natural inhabitants of river Yamuna, India. Frontiers in Microbiology, 7, 176. https://doi.org/10.3389/fmicb.2016.00176

    Article  Google Scholar 

  • Bajaj, P., Singh, N. S., Kanaujia, P. K., & Virdi, J. S. (2015). Distribution and molecular characterization of genes encoding CTX-M and AmpC β-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Science of the Total Environment, 505, 350–356. https://doi.org/10.1016/j.scitotenv.2014.09.084

    Article  CAS  Google Scholar 

  • Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Guruge, K. S., & Subedi, B. (2017). A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicology and Environmental Safety, 137, 113–120. https://doi.org/10.1016/j.ecoenv.2016.11.014

    Article  CAS  Google Scholar 

  • Bandyopadhyay, S., & Samanta, I. (2020). Antimicrobial resistance in agri-food chain and companion animals as a re-emerging menace in post-COVID epoch: Low-and middle-income countries perspective and mitigation strategies. Frontiers in Veterinary Science, 7, 620. https://doi.org/10.3389/fvets.2020.00620

    Article  Google Scholar 

  • Beaber, J. W., Hochhut, B., & Waldor, M. K. (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature, 427(6969), 72–74. https://doi.org/10.1038/nature02241

    Article  CAS  Google Scholar 

  • Bengtsson-Palme, J., & Larsson, D. J. (2016). Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149. https://doi.org/10.1016/j.envint.2015.10.015

    Article  CAS  Google Scholar 

  • Bharathkumar, G., & Abraham, T. J. (2011). Antibiotic susceptibility of Gram-negative bacteria isolated from freshwater fish hatcheries of West Bengal, India. Indian Journal of Fisheries, 58(3), 135–138. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7b67ebc591b8fd9fe0731814b8fd647a4d106a9a

  • Bhattacharyya, D., Banerjee, J., Bandyopadhyay, S., Mondal, B., Nanda, P. K., Samanta, I., Mahanti, A., Das, A. K., Das, G., & Dandapat, P. (2016). First report on vancomycin-resistant Staphylococcus aureus in bovine and caprine milk. Microbial Drug Resistance, 22(8), 675–681. https://doi.org/10.1089/mdr.2015.0330

    Article  CAS  Google Scholar 

  • Bhattacharyya, A., Haldar, A., Bhattacharyya, M., & Ghosh, A. (2019). Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. Science of the Total Environment, 647, 1626–1639. https://doi.org/10.1016/j.scitotenv.2018.08.038

    Article  CAS  Google Scholar 

  • Bhattacharyya, D., Banerjee, J., Habib, M., Thapa, G., Samanta, I., Nanda, P. K., Dutt, T., Sarkar, K., & Bandyopadhyay, S. (2022). Elucidating the resistance repertoire, biofilm production, and phylogenetic characteristics of multidrug-resistant Escherichia coli isolated from community ponds: A study from West Bengal. India. Water Environment Research, 94(1), e1678. https://doi.org/10.1002/wer.1678

    Article  CAS  Google Scholar 

  • Biswas, K., Paul, D., & Sinha, S. N. (2015). Prevalence of multiple antibiotic-resistant coliform bacteria in the water of river Ganga. Frontiers. Environmental Microbiology, 1(3), 44. https://doi.org/10.11648/j.fem.20150103.12

    Article  Google Scholar 

  • Browner, C. M. (1998). Guidelines for ecological risk assessment; US Environmental Protection Agency (p. 188) https://www.epa.gov/sites/default/files/2014-11/documents/eco_risk_assessment1998.pdf

    Google Scholar 

  • Calderón, A., Meraz, M., & Tomasini, A. (2019). Pharmaceuticals present in urban and hospital wastewaters in Mexico City. Journal of Water Chemistry and Technology, 41, 105–112. https://doi.org/10.3103/S1063455X19020073

    Article  Google Scholar 

  • CCI (2021). Market study on the pharmaceutical sector in India. Key findings and observations, Competition Commission of India.(n.d.). Retrieved December 19, 2022, from https://www.cci.gov.in/images/marketstudie/en/market-study-on-the-pharmaceutical-sector-in-india1652267460.pdf

  • Chandran, S. P., Diwan, V., Tamhankar, A. J., Joseph, B. V., Rosales-Klintz, S., Mundayoor, S., Lundborg, C. S., & Macaden, R. (2014). Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB gene in E scherichia coli in hospital wastewater: A matter of concern. Journal of Applied Microbiology, 117(4), 984–995. https://doi.org/10.1111/jam.12591

    Article  CAS  Google Scholar 

  • Chang, X., Meyer, M. T., Liu, X., Zhao, Q., Chen, H., Chen, J., Qiu, Z., Yang, L., Cao, J., & Shu, W. (2010). Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental Pollution, 158(5), 1444–1450. https://doi.org/10.1016/j.envpol.2009.12.034

    Article  CAS  Google Scholar 

  • Chitnis, V., Chitnis, D., Patil, S., & Kant, R. (2000). Hospital effluent: A source of multiple drug-resistant bacteria. Current Science, 989–991 http://www.jstor.org/stable/24104814

  • Chitnis, V., Chitnis, S., Vaidya, K., Ravikant, S., Patil, S., & Chitnis, D. S. (2004). Bacterial population changes in hospital effluent treatment plant in central India. Water Research, 38(2), 441–447. https://doi.org/10.1016/j.watres.2003.09.038

    Article  CAS  Google Scholar 

  • CPCB.(1986). Effluent standards. In “The Environment (Protection) Rules, 1986.” https://parivesh.nic.in/writereaddata/ENV/THE%20ENVIRONMENT.pdf

  • CPCB. (2021). National Inventory of Sewage Treatment Plants. Central Pollution Control Board, Ministry of Environment & Forest & Climate change, Parivesh Bhawan, East Arjun Nagar, Delhi, Govt. of India. (p. 187). https://cpcb.nic.in/openpdffile.php?id=UmVwb3J0RmlsZXMvMTIyOF8xNjE1MTk2MzIyX21lZGlhcGhvdG85NTY0LnBkZg==

  • Das, A., Guha, C., Biswas, U., Jana, P. S., Chatterjee, A., & Samanta, I. (2017). Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal. Veterinary World, 10(5), 517. https://doi.org/10.14202/vetworld.2017.517-520

    Article  CAS  Google Scholar 

  • Das, B. K., Behera, B. K., Chakraborty, H. J., Paria, P., Gangopadhyay, A., Rout, A. K., Nayak, K. K., Parida, P. K., & Rai, A. (2020). Metagenomic study focusing on antibiotic resistance genes from the sediments of River Yamuna. Gene, 758, 144951. https://doi.org/10.1016/j.gene.2020.144951

    Article  CAS  Google Scholar 

  • Das, M. K. (2018). Fish diseases in wastewater aquaculture and remedial measures. In Wastewater management through aquaculture (pp. 139–159). Springer. https://doi.org/10.1007/978-981-10-7248-2_7

    Chapter  Google Scholar 

  • Das, M. K., Naskar, M., Mohammad, L. M., Srivastava, P. K., Dey, S., & Rej, A. (2012). Influence of ecological factors on the patterns of fish species richness in tropical Indian rivers. Acta Ichthyologica Et Piscatoria, 42(1), 47–58. https://doi.org/10.3750/AIP2011.42.1.06

    Article  Google Scholar 

  • Deb, A., Bhattacharjee, I., Das, T., Mandal, B., & Chakravorty, P. P. (2020). Antibiotic and heavy metal resistance in bacteria from organs of sewage fed farm fishes. Bioscience Biotechnology Research Communications, 13(4). https://doi.org/10.21786/bbrc/13.4/104

  • Department of Fisheries. (2020). Handbook on fisheries statistics, Fisheries Statistics Division, Ministry of Fisheries (p. 2020). Animal Husbandry & Dairying. Government of India. (p. 196). https://dof.gov.in/sites/default/files/2021-02/Final_Book.pdf

  • Devarajan, N., Laffite, A., Mulaji, C. K., Otamonga, J.-P., Mpiana, P. T., Mubedi, J. I., Prabakar, K., Ibelings, B. W., & Poté, J. (2016). Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters. PloS One, 11(2), e0149211. https://doi.org/10.1371/journal.pone.0149211

    Article  CAS  Google Scholar 

  • Diwan, V., Chandran, S. P., Tamhankar, A. J., Stålsby Lundborg, C., & Macaden, R. (2012). Identification of extended-spectrum β-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. Journal of Antimicrobial Chemotherapy, 67(4), 857–859. https://doi.org/10.1093/jac/dkr564

    Article  CAS  Google Scholar 

  • Diwan, V., Tamhankar, A. J., Aggarwal, M., Sen, S., Khandal, R. K., & Lundborg, C. S. (2009). Detection of antibiotics in hospital effluents in India. Current Science, 97(12), 1752–1755. http://www.jstor.org/stable/24107255

  • Diwan, V., Tamhankar, A. J., Khandal, R. K., Sen, S., Aggarwal, M., Marothi, Y., Iyer, R. V., Sundblad-Tonderski, K., & Stålsby-Lundborg, C. (2010). Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health, 10(1), 1–8. https://doi.org/10.1186/1471-2458-10-414

    Article  CAS  Google Scholar 

  • EC Com. (2017). A European One Health Action Plan against Antimicrobial Resistance (AMR). (p. 24). https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf

  • Fick, J., Söderström, H., Lindberg, R. H., Phan, C., Tysklind, M., & Larsson, D. J. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28(12), 2522–2527. https://doi.org/10.1897/09-073.1

    Article  CAS  Google Scholar 

  • Galvin, S., Boyle, F., Hickey, P., Vellinga, A., Morris, D., & Cormican, M. (2010). Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Applied and Environmental Microbiology, 76(14), 4772–4779. https://doi.org/10.1128/aem.02898-09

    Article  CAS  Google Scholar 

  • Gandra, S., Joshi, J., Trett, A., Lamkang, A. S., & Laxminarayan, R. (2017). Scoping report on antimicrobial resistance in India. Center for Disease Dynamics, Economics & Policy: Washington, DC, USA, 2017, 1–146. https://dbtindia.gov.in/sites/default/files/ScopingreportonAntimicrobialresistanceinIndia.pdf

  • Gaonker, O., Arora, T., & Mohapatra, P. (2021). Menace of antibiotic pollution in Indian rivers (p. 52). Toxics Link H2 (Ground Floor), Jungpura Extension New Delhi - 110014, India. https://www.researchgate.net/publication/358850280

  • Gautam, A. K., Kumar, S., & Sabumon, P. C. (2007). Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management, 83(3), 298–306. https://doi.org/10.1016/j.jenvman.2006.03.009

    Article  CAS  Google Scholar 

  • Giguère, S., Prescott, J. F., & Dowling, P. M. (Eds) (2013). Antimicrobial therapy in veterinary medicine. John Wiley & Sons. https://doi.org/10.1002/9781118675014

  • Ginebreda, A., Muñoz, I., de Alda, M. L., Brix, R., López-Doval, J., & Barceló, D. (2010). Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International, 36(2), 153–162. https://doi.org/10.1016/j.envint.2009.10.003

    Article  CAS  Google Scholar 

  • Githinji, L. J., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, & Soil Pollution, 219(1), 191–201. https://doi.org/10.1007/s11270-010-0697-1

    Article  CAS  Google Scholar 

  • González-Plaza, J. J., Šimatović, A., Milaković, M., Bielen, A., Wichmann, F., & Udiković-Kolić, N. (2018). Functional repertoire of antibiotic resistance genes in antibiotic manufacturing effluents and receiving freshwater sediments. Frontiers in Microbiology, 8, 2675. https://doi.org/10.3389/fmicb.2017.02675

    Article  Google Scholar 

  • Gopal, C. M., Bhat, K., Ramaswamy, B. R., Kumar, V., Singhal, R. K., Basu, H., Udayashankar, H. N., Vasantharaju, S. G., Praveenkumarreddy, Y., & Lino, Y. (2021). Seasonal occurrence and risk assessment of pharmaceutical and personal care products in Bengaluru rivers and lakes, India. Journal of Environmental Chemical Engineering, 9(4), 105610.

    CAS  Google Scholar 

  • Gothwal, R., & Shashidhar. (2017). Occurrence of high levels of fluoroquinolones in aquatic environment due to effluent discharges from bulk drug manufacturers. Journal of Hazardous, Toxic, and Radioactive Waste, 21(3), 05016003. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000346

    Article  Google Scholar 

  • Guardone, L., Tinacci, L., Armani, A., & Trevisani, M. (2022). Residues of veterinary drugs in fish and fish products: An analysis of RASFF data over the last 20 years. Food Control, 135, 108780. https://doi.org/10.1016/j.foodcont.2021.108780

    Article  CAS  Google Scholar 

  • Gullberg, E., Albrecht, L. M., Karlsson, C., Sandegren, L., & Andersson, D. I. (2014). Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio, 5(5), e01918–e01914. DOI. https://doi.org/10.1128/mbio.01918-14

    Article  CAS  Google Scholar 

  • Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens, 7(7), e1002158. https://doi.org/10.1371/journal.ppat.1002158

    Article  CAS  Google Scholar 

  • Gunnarsson, L., Kristiansson, E., Rutgersson, C., Sturve, J., Fick, J., Förlin, L., & Larsson, D. J. (2009). Pharmaceutical industry effluent diluted 1: 500 affects global gene expression, cytochrome P450 1A activity, and plasma phosphate in fish. Environmental Toxicology and Chemistry, 28(12), 2639–2647. https://doi.org/10.1897/09-120.1

    Article  CAS  Google Scholar 

  • Hanna, N., Purohit, M., Diwan, V., Chandran, S. P., Riggi, E., Parashar, V., Tamhankar, A. J., & Lundborg, C. S. (2020). Monitoring of water quality, antibiotic residues, and antibiotic-resistant escherichia coli in the kshipra river in India over a 3-year period. International Journal of Environmental Research and Public Health, 17(21), 7706. https://doi.org/10.3390/ijerph17217706

    Article  CAS  Google Scholar 

  • Hartmann, A., Golet, E. M., Gartiser, S., Alder, A. C., Koller, T., & Widmer, R. M. (1999). Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Archives of Environmental Contamination and Toxicology, 36(2), 115–119. https://doi.org/10.1007/s002449900449

    Article  CAS  Google Scholar 

  • Iyanee, F. S., Simamura, K., Prabhasankar, V. P., Taniyasu, S., Tsuruta, M., Balakrishna, K., Yamashita, N., Guruge, K. S., Akiba, M., & Joshua, D. I. (2013). Occurrence of antibiotics in river water: A case study of Vrishabhavathi River near Bangalore, India. In 33rd International Symposium on Halogenated Persistent Organic Pollutants, DIOXIN, 2013.

    Google Scholar 

  • Joshua, D. I., Praveenkumarreddy, Y., Prabhasankar, V. P., D’Souza, A. P., Yamashita, N., & Balakrishna, K. (2020). First report of pharmaceuticals and personal care products in two tropical rivers of southwestern India. Environmental Monitoring and Assessment, 192, 529. https://doi.org/10.1007/s10661-020-08480-2

    Google Scholar 

  • Kallummal, M., & Bugalya, K. (2012). Trends in India’s trade in pharmaceutical sector: Some insights. Center for WTO Studies Working Paper, 200(2) https://wtocentre.iift.ac.in/workingpaper/Working%20Paper2.pdf

  • Kanama, K. M., Daso, A. P., Mpenyana-Monyatsi, L., & Coetzee, M. A. (2018). Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in North West Province, South Africa. Journal of Toxicology, 2018, 3751930. https://doi.org/10.1155/2018/3751930

    Article  CAS  Google Scholar 

  • Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 361(1–3), 196–207. https://doi.org/10.1016/j.scitotenv.2005.06.030

    CAS  Google Scholar 

  • Kim, K.-R., Owens, G., Kwon, S.-I., So, K.-H., Lee, D.-B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution, 214(1), 163–174. https://doi.org/10.1007/s11270-010-0412-2

    Article  CAS  Google Scholar 

  • Koya, S. F., Ganesh, S., Selvaraj, S., Wirtz, V. J., Galea, S., & Rockers, P. C. (2022). Consumption of systemic antibiotics in India in 2019. The Lancet Regional Health-Southeast Asia, 4, 100025. https://doi.org/10.1016/j.lansea.2022.100025

    Article  Google Scholar 

  • Kristiansson, E., Fick, J., Janzon, A., Grabic, R., Rutgersson, C., Weijdegård, B., Söderström, H., & Larsson, D. J. (2011). Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PloS One, 6(2), e17038. https://doi.org/10.1371/journal.pone.0017038

    CAS  Google Scholar 

  • Kumar, M., Chaminda, T., Honda, R., & Furumai, H. (2019). Vulnerability of urban waters to emerging contaminants in India and Sri Lanka: Resilience framework and strategy. APN Science Bulletin, 9(1). https://doi.org/10.30852/sb.2019.799

  • Kumar, S., Tripathi, V. R., & Garg, S. K. (2013). Antibiotic resistance and genetic diversity in water-borne Enterobacteriaceae isolates from recreational and drinking water sources. International Journal of Environmental Science and Technology, 10(4), 789–798. https://doi.org/10.1007/s13762-012-0126-7

    Article  CAS  Google Scholar 

  • Kurunthachalam, S. K. (2012). Pharmaceutical substances in India are a point of great concern? Hydrology. Current Research., 3(5). https://doi.org/10.4172/2157-7587.1000e103

  • Kuzmanovic, M., Ginebreda, A., & Barceló, D. (2014). Risk assessment and prioritization of pollutants in continental Mediterranean waters based on hazard quotients. Contributions Science, 10, 125–134. https://doi.org/10.2436/20.7010.01.197

    Article  Google Scholar 

  • Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental Pollution, 163, 287–303. https://doi.org/10.1016/j.envpol.2011.12.034

    Article  CAS  Google Scholar 

  • Larsson, D. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148(3), 751–755. https://doi.org/10.1016/j.jhazmat.2007.07.008

    Article  CAS  Google Scholar 

  • Lata, P., Ram, S., & Shanker, R. (2016). Multiplex PCR based genotypic characterization of pathogenic vancomycin resistant Enterococcus faecalis recovered from an Indian river along a city landscape. Springerplus, 5, 1199. https://doi.org/10.1186/s40064-016-2870-5

    Article  CAS  Google Scholar 

  • Laxminarayan, R., & Chaudhury, R. R. (2016). Antibiotic resistance in India: Drivers and opportunities for action. PLoS Medicine, 13(3), e1001974. https://doi.org/10.1371/journal.pmed.1001974

    Article  Google Scholar 

  • Leung, H. W., Minh, T. B., Murphy, M. B., Lam, J. C., So, M. K., Martin, M., Lam, P. K., & Richardson, B. J. (2012). Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environment International, 42, 1–9. https://doi.org/10.1016/j.envint.2011.03.004

    Article  CAS  Google Scholar 

  • Li, B., Zhang, T., Xu, Z., & Fang, H. H. P. (2009). Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 645(1–2), 64–72. https://doi.org/10.1016/j.aca.2009.04.042

    Article  CAS  Google Scholar 

  • Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. (2012). Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere, 89(11), 1307–1315. https://doi.org/10.1016/j.chemosphere.2012.05.079

    Article  CAS  Google Scholar 

  • Lübbert, C., Baars, C., Dayakar, A., Lippmann, N., Rodloff, A. C., Kinzig, M., & Sörgel, F. (2017). Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection, 45(4), 479–491. https://doi.org/10.1007/s15010-017-1007-2

    Article  CAS  Google Scholar 

  • Marathe, N. P., Gaikwad, S. S., Vaishampayan, A. A., Rasane, M. H., Shouche, Y. S., & Gade, W. N. (2016). Mossambicus tilapia (Oreochromis mossambicus) collected from water bodies impacted by urban waste carries extended-spectrum beta-lactamases and integron-bearing gut bacteria. Journal of Biosciences, 41(3), 341–346.

    CAS  Google Scholar 

  • Marathe, N. P., Janzon, A., Kotsakis, S. D., Flach, C.-F., Razavi, M., Berglund, F., Kristiansson, E., & Larsson, D. J. (2018). Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environment International, 112, 279–286.

    CAS  Google Scholar 

  • Marathe, N. P., Pal, C., Gaikwad, S. S., Jonsson, V., Kristiansson, E., & Larsson, D. J. (2017). Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Research, 124, 388–397.

    CAS  Google Scholar 

  • Marathe, N. P., Regina, V. R., Walujkar, S. A., Charan, S. S., Moore, E. R., Larsson, D. J., & Shouche, Y. S. (2013). A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS One, 8(10), e77310.

    CAS  Google Scholar 

  • Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Research, 47(3), 957–995.

    CAS  Google Scholar 

  • Mittal, P., Prasoodanan, P. K., & V., Dhakan, D. B., Kumar, S., & Sharma, V. K. (2019). Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes. Environmental Microbiome, 14(1), 1–12.

    CAS  Google Scholar 

  • Mohanta, T., & Goel, S. (2014). Prevalence of antibiotic-resistant bacteria in three different aquatic environments over three seasons. Environmental Monitoring and Assessment, 186(8), 5089–5100.

    CAS  Google Scholar 

  • Mohapatra, S., Huang, C.-H., Mukherji, S., & Padhye, L. P. (2016). Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 159, 526–535.

    CAS  Google Scholar 

  • Mulchandani, R., Wang, Y., Gilbert, M., & Van Boeckel, T. P. (2023). Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Global Public Health, 3(2), e0001305. https://doi.org/10.1371/journal.pgph.0001305

    Article  Google Scholar 

  • Mutiyar, P. K., & Mittal, A. K. (2013). Occurrences and fate of an antibiotic amoxicillin in extended aeration-based sewage treatment plant in Delhi, India: A case study of emerging pollutant. Desalination and Water Treatment, 51(31–33), 6158–6164.

    CAS  Google Scholar 

  • Mutiyar, P. K., & Mittal, A. K. (2014a). Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environmental Monitoring and Assessment, 186(1), 541–557.

    CAS  Google Scholar 

  • Mutiyar, P. K., & Mittal, A. K. (2014b). Risk assessment of antibiotic residues in different water matrices in India: Key issues and challenges. Environmental Science and Pollution Research, 21(12), 7723–7736.

    CAS  Google Scholar 

  • NAP-AMR.(2017). Government of India. National Action Plan on Antimicrobial Resistance (NAP-AMR) 2017—2021—Google Search. https://www.google.com/search?q=Government+of+India.+National+Action+Plan+on+Antimicrobial+Resistance

  • Olofsson, U., Bignert, A., & Haglund, P. (2012). Time-trends of metals and organic contaminants in sewage sludge. Water Research, 46(15), 4841–4851.

    CAS  Google Scholar 

  • Pan, Y., Zeng, J., Li, L., Yang, J., Tang, Z., Xiong, W., Li, Y., Chen, S., & Zeng, Z. (2020). Coexistence of antibiotic resistance genes and virulence factors deciphered by large-scale complete genome analysis. Msystems, 5(3), e00821–e00819.

    CAS  Google Scholar 

  • Patil, P. K., Mishra, S. S., Pradhan, P. K., Manna, S. K., Abraham, J. T., Solanki, H. G., et al. (2022). Usage pattern of chemicals, biologicals and veterinary medicinal products in Indian aquaculture. Reviews in Aquaculture, 14(4), 2038–2063. https://doi.org/10.1111/raq.12688

    Article  Google Scholar 

  • Poonia, S., Singh, T. S., & Tsering, D. C. (2014). Antibiotic susceptibility profile of bacteria isolated from natural sources of water from rural areas of East Sikkim. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 39(3), 156.

    Google Scholar 

  • Prabhasankar, V. P., Joshua, D. I., Balakrishna, K., Siddiqui, I. F., Taniyasu, S., Yamashita, N., Kannan, K., Akiba, M., Praveenkumarreddy, Y., & Guruge, K. S. (2016). Removal rates of antibiotics in four sewage treatment plants in South India. Environmental Science and Pollution Research, 23(9), 8679–8685.

    CAS  Google Scholar 

  • Preethirani, P. L., Isloor, S., Sundareshan, S., Nuthanalakshmi, V., Deepthikiran, K., Sinha, A. Y., Rathnamma, D., Nithin Prabhu, K., Sharada, R., & Mukkur, T. K. (2015). Isolation, biochemical and molecular identification, and in-vitro antimicrobial resistance patterns of bacteria isolated from bubaline subclinical mastitis in South India. PLoS One, 10(11), e0142717.

    CAS  Google Scholar 

  • Ram, B., & Kumar, M. (2020). Correlation appraisal of antibiotic resistance with fecal, metal and microplastic contamination in a tropical Indian river, lakes and sewage. NPJ Clean Water, 3(1), 1–12.

    Google Scholar 

  • Ram, S., Vajpayee, P., & Shanker, R. (2007). Prevalence of multi-antimicrobial-agent resistant, shiga toxin and enterotoxin producing Escherichia coli in surface waters of river Ganga. Environmental Science & Technology, 41(21), 7383–7388.

    CAS  Google Scholar 

  • Ramaswamy, B. R., Shanmugam, G., Velu, G., Rengarajan, B., & Larsson, D. J. (2011). GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. Journal of Hazardous Materials, 186(2–3), 1586–1593.

    CAS  Google Scholar 

  • Ranjalkar, J., & Chandy, S. (2019). India’s National Action Plan for antimicrobial resistance–an overview of the context, status, and way ahead. Journal of Family Medicine and Primary Care, 2019(8), 1828. https://doi.org/10.4103/jfmpc.jfmpc_275_19

    Article  Google Scholar 

  • Rather, T. A., Hussain, S. A., Bhat, S. A., Shah, S. N., Arshid, S., & Shahnawaz, M. (2013). Antibiotic sensitivity of E. coli and Salmonella isolated from different water sources in Kashmir, India. Comparative Clinical Pathology, 22(4), 729–731.

    CAS  Google Scholar 

  • Renganathan, J., Ramakrishnan, K., Ravichandran, M. K., & Philip, L. (2021). Spatio-temporal distribution of pharmaceutically active compounds in the River Cauvery and its tributaries, South India. Science of the Total Environment, 800, 149340. https://doi.org/10.1016/j.scitotenv.2021.149340

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz, S., Vaz-Moreira, I., Della Giustina, S. V., Llorca, M., Barceló, D., Schubert, S., Berendonk, T. U., Michael-Kordatou, I., Fatta-Kassinos, D., & Martinez, J. L. (2020). Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environment International, 140, 105733.

    CAS  Google Scholar 

  • Sabri, N., Schmitt, H., Van der Zaan, B., Gerritsen, H. W., Zuidema, T., Rijnaarts, H. H. M., & Langenhoff, A. A. M. (2020). Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. Journal of Environmental Chemical Engineering, 8(1), 102245. https://doi.org/10.1016/j.jece.2018.03.004

    Article  CAS  Google Scholar 

  • Santos, L. H., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., & Montenegro, M. C. B. (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Science of the Total Environment, 461, 302–316.

    Google Scholar 

  • Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G., & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research, 21(2), 921–931.

    CAS  Google Scholar 

  • Sharma, B. M., Bečanová, J., Scheringer, M., Sharma, A., Bharat, G. K., Whitehead, P. G., Klánová, J., & Nizzetto, L. (2019). Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Science of the Total Environment, 646, 1459–1467.

    CAS  Google Scholar 

  • Sharma, P., Mathur, N., Singh, A., Sogani, M., Bhatnagar, P., Atri, R., & Pareek, S. (2015). Monitoring hospital wastewaters for their probable genotoxicity and mutagenicity. Environmental Monitoring and Assessment, 187(1), 1–9.

    Google Scholar 

  • Siddiqui, K., Mondal, A. H., Siddiqui, M. T., Azam, M., & Haq, Q. M. R. (2018). Prevalence and molecular characterization of ESBL producing Enterobacteriaceae from highly polluted stretch of river Yamuna, India. Microbiology and Biotechnology Letters, 46(2), 135–144.

    CAS  Google Scholar 

  • Singh, A. K., Das, S., Kumar, S., Gajamer, V. R., Najar, I. N., Lepcha, Y. D., Tiwari, H. K., & Singh, S. (2020a). Distribution of antibiotic-resistant Enterobacteriaceae pathogens in potable spring water of eastern Indian Himalayas: Emphasis on virulence gene and antibiotic resistance genes in Escherichia coli. Frontiers in Microbiology, 11, 581072.

    Google Scholar 

  • Singh, F., Hirpurkar, S. D., Rawat, N., Shakya, S., Kumar, R., Kumar, S., Meena, R. K., Rajput, P. K., & Kumar, J. (2020b). Carbapenemase and ESBL genes with class 1 integron among fermenting and nonfermenting bacteria isolated from water sources from India. Letters in Applied Microbiology, 71(1), 70–77.

    CAS  Google Scholar 

  • Singh, K. P., Rai, P., Singh, A. K., Verma, P., & Gupta, S. (2014). Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environmental Monitoring and Assessment, 186(10), 6663–6682.

    CAS  Google Scholar 

  • Singh, N. S., Singhal, N., & Virdi, J. S. (2018). Genetic environment of bla TEM-1, bla CTX-M-15, bla CMY-42 and characterization of integrons of Escherichia coli isolated from an Indian urban aquatic environment. Frontiers in Microbiology, 9, 382. https://doi.org/10.3389/fmicb.2018.00382

    Article  Google Scholar 

  • Skariyachan, S., Mahajanakatti, A. B., Grandhi, N. J., Prasanna, A., Sen, B., Sharma, N., Vasist, K. S., & Narayanappa, R. (2015). Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. Environmental Monitoring and Assessment, 187(5), 1–13.

    Google Scholar 

  • Subedi, B., Balakrishna, K., Joshua, D. I., & Kannan, K. (2017). Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere, 167, 429–437.

    CAS  Google Scholar 

  • Subedi, B., Codru, N., Dziewulski, D. M., Wilson, L. R., Xue, J., Yun, S., Braun-Howland, E., Minihane, C., & Kannan, K. (2015). A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Research, 72, 28–39.

    CAS  Google Scholar 

  • Sudha, S., Divya, P. S., Francis, B., & Hatha, A. A. (2012). Prevalence and distribution of Vibrio parahaemolyticus in finfish from Cochin (south India). Vet Ital, 48(269), e81.

    Google Scholar 

  • Sulis, G., Batomen, B., Kotwani, A., Pai, M., & Gandra, S. (2021). Sales of antibiotics and hydroxychloroquine in India during the COVID-19 epidemic: An interrupted time series analysis. PLoS Medicine, 18(7), e1003682.

    CAS  Google Scholar 

  • Sundaramanickam, A., Suresh Kumar, P., Kumaresan, S., & Balasubramanian, T. (2015). Isolation and molecular characterization of multidrug-resistant halophilic bacteria from shrimp farm effluents of Parangipettai coastal waters. Environmental Science and Pollution Research, 22(15), 11700–11707.

    CAS  Google Scholar 

  • Swapna, K. M., Rajesh, R., & Lakshmanan, P. T. (2012). Incidence of antibiotic residues in farmed shrimps from the southern states of India. Indian Journal of Geo-Marine Sciences, 41, 344–347.

    CAS  Google Scholar 

  • Szczepanowski, R., Braun, S., Riedel, V., Schneiker, S., Krahn, I., Pühler, A., & Schlüter, A. (2005). The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology, 151(4), 1095–1111.

    CAS  Google Scholar 

  • Taneja, N., & Sharma, M. (2019). Antimicrobial resistance in the environment: The Indian scenario. Indian Journal of Medical Research, 149(2), 119–128.

    Google Scholar 

  • Upadhyay, S., & Joshi, S. R. (2015). TEM mediated extended spectrum cephalosporin resistance in clinical & environmental isolates of Gram negative bacilli: A report from northeast India. The Indian Journal of Medical Research, 142(5), 614.

    CAS  Google Scholar 

  • Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654.

    Google Scholar 

  • Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., & Barceló, D. (2012). Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430, 109–118.

    CAS  Google Scholar 

  • Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of the Total Environment, 407(8), 2711–2723.

    CAS  Google Scholar 

  • WHO (2015). Water, sanitation and hygiene in health care facilities status in low- and middle-income countries and way forward. Page 35, edited byWorld Health Organization, United Nations Children’s Fund. Available from:https://www.who.int/publications/i/item/9789241508476, accessed on December 2, 2022.

  • WHO, FAO, WOAH (2020). Technical brief on water, sanitation, hygiene (WASH) and wastewater management to prevent infections and reduce the spread of antimicrobial resistance (AMR). World Health Organization, Food and Agriculture Organization, World Organization for Animal Health (p. 32). https://www.who.int/publications/i/item/9789240006416

  • Wiest, L., Chonova, T., Bergé, A., Baudot, R., Bessueille-Barbier, F., Ayouni-Derouiche, L., & Vulliet, E. (2018). Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environmental Science and Pollution Research, 25(10), 9207–9218. https://doi.org/10.1007/s11356-017-9662-5

    Article  CAS  Google Scholar 

  • Wilkinson, J. L., Boxall, A. B., Kolpin, D. W., Leung, K. M., Lai, R. W., Galbán-Malagón, C., Adell, A. D., Mondon, J., Metian, M., & Marchant, R. A. (2022). Pharmaceutical pollution of the world’s rivers. Proceedings of the National Academy of Sciences, 119(8), e2113947119. https://doi.org/10.1073/pnas.2113947119

    Article  CAS  Google Scholar 

  • Wilson, B. A., Smith, V. H., deNoyelles, F., & Larive, C. K. (2003). Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environmental Science & Technology, 37(9), 1713–1719. https://doi.org/10.1021/es0259741

    Article  CAS  Google Scholar 

  • Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., Zhang, Y., Li, X., & Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379–1385. https://doi.org/10.1016/j.chemosphere.2014.02.040

    Article  CAS  Google Scholar 

  • Xu, L., Zhang, H., Xiong, P., Zhu, Q., Liao, C., & Jiang, G. (2021). Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of the total Environment, 753, 141975. https://doi.org/10.1016/j.scitotenv.2020.141975

    Article  CAS  Google Scholar 

  • Zhou, Y., Xu, Y.-B., Xu, J.-X., Zhang, X.-H., Xu, S.-H., & Du, Q.-P. (2015). Combined toxic effects of heavy metals and antibiotics on a Pseudomonas fluorescens strain ZY2 isolated from swine wastewater. International Journal of Molecular Sciences, 16(2), 2839–2850. https://doi.org/10.3390/ijms16022839

    Article  CAS  Google Scholar 

  • Zhu, Y.-G., Johnson, T. A., Su, J.-Q., Qiao, M., Guo, G.-X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110(9), 3435–3440. https://doi.org/10.1073/pnas.1222743110

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manas Kumar Das: conceived the review outline, literature search, drafted the manuscript, review and editing of the paper.

Subhasree Das: conceived the review outline, literature search, drafted the manuscript, review and editing of the paper.

Pankaj Kumar Srivastava: conceived the review outline, prepared figures, review and editing of the paper.

Corresponding author

Correspondence to Manas Kumar Das.

Ethics declarations

Ethics approval

“All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the instructions for authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.”

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M.K., Das, S. & Srivastava, P.K. An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India. Environ Monit Assess 195, 1015 (2023). https://doi.org/10.1007/s10661-023-11569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11569-z

Keywords

Navigation