Skip to main content
Log in

Machine learning approaches for data-driven process monitoring of biological wastewater treatment plant: A review of research works on benchmark simulation model No. 1(BSM1)

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the past decade, machine learning techniques have seen wide industrial applications for design of data-based process monitoring systems with an aim to improve industrial productivity. An efficient process monitoring system for wastewater treatment process (WWTP) ensures increased efficiency and effluents meeting stringent emission norms. Benchmark simulation model No. 1 (BSM1) provides a simulation platform to researchers for developing efficient data-based process monitoring, quality monitoring, and process control systems for WWTPs. The present article presents a review of all research works reporting applications of various machine learning techniques for sensor and process fault detection of BSM1. The review focuses on process monitoring of biological wastewater treatment process, which uses a series of aerobic and anaerobic reactions followed by secondary settling process. Detailed information on various parameters monitored, different machine learning techniques explored, and results obtained by different researchers are presented in tabular and graphical format. In the review, it was observed that principal component analysis (PCA) and its variants account for the maximum number of research works for process monitoring in WWTPs and there are very few applications of recently developed deep learning techniques. Following the review and analysis, various future scopes of research (such as techniques yet to be explored or improvement of results for a particular fault) are also presented. These information will assist prospective researchers working on BSM1 to take forward the research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

xCOD :

Concentration of COD in effluent flow

xS_S5 :

Concentration of readily biodegradable substrate in the 5th reactor

xS_O5 :

Concentration of dissolved oxygen in the 5th reactor

xS_NO5 :

Concentration of nitrate and nitrite nitrogen in the 5th reactor

xS_NH5 :

Concentration of NH4+  + NH3 nitrogen in the 5th reactor

xS_ALK5 :

Alkalinity in the 5th reactor

xQ_f :

Flow rate entering the clarifier

BOD:

Biological oxygen demand

xQ_a :

Flow rate of internal reflux

A,c,l,p:

Whale variables

Scin :

The concentration of substrate in the inflow

Soin :

The concentration of dissolved oxygen in the inflow

qin :

The inflow rate

Sos :

The dissolved oxygen mass at saturation

k1 :

The conversion coefficient of the substrate to biomass

k2 :

The conversion coefficient of oxygen to the biomass

b:

The endogenous respiration coefficient

kLa :

The oxygen mass transfer coefficient

Ki:

Inhibition coefficient

Ks:

The half-saturation coefficient

XCOD :

Chemical oxygen demand concentration

SO :

Dissolve oxygen concentration

xB, H :

Active heterotrophic biomass

xSNH :

Ammonia concentration

xSNO :

Nitrate concentration

xB, A :

Active autotrophic biomass

xND :

Particulate biodegradable organic nitrogen

SND :

Soluble biodegradable organic nitrogen

SSe:

Suspended solids concentration in the effluent

SSin:

Suspended solids concentration in the influent

xS :

Biodegradable substrate

TN:

Total nitrogen concentration in the effluent

TCOD:

Total chemical oxygen demand in the effluent

rp :

Flocculent zone settling parameter

µA :

Autotrophic bacteria growth rate

Qr:

Internal return flow change

µH :

Maximum heterotrophic growth rate

Qw:

Sludge discharge flow rate

AC:

Ammonia concentration

v0 :

Clarifier parameter

TSS:

Total suspended solid concentration

References

  • Alauddin, M., Khan, F., Imtiaz, S., & Ahmed, S. (2018). A bibliometric review and analysis of data-driven fault detection and diagnosis methods for process systems. Industrial & Engineering Chemistry Research, 57(32), 10719–10735.

    Article  CAS  Google Scholar 

  • Alex, J., Rieger, L., Winkler, S., & Siegrist, H. (2003). Progress in sensor technology-progress in process control? Part II: Results from a simulation benchmark study. Water Science and Technology, 47(2), 113–120.

    Article  CAS  Google Scholar 

  • Alex, J., Benedetti, L., Copp, J., Gernaey, K. V., Jeppsson, U., Nopens, I., Pons, M-N., Steyer, J-P., & Vanrolleghem, P. A. (2008). Benchmark Simulation Model no. 1 (BSM1). Report by the IWA Taskgroup on benchmarking of control strategies for WWTPs, 1. Lund University.

  • Anter, A. M., Gupta, D., & Castillo, O. (2020). A novel parameter estimation in dynamic model via fuzzy swarm intelligence and chaos theory for faults in wastewater treatment plant. Soft Computing, 24(1), 111–129.

    Article  Google Scholar 

  • Arpitha, V., & Pani, A. K. (2022). Machine learning approaches for fault detection in semiconductor manufacturing process: A critical review of recent applications and future perspectives. Chemical and Biochemical Engineering Quarterly, 36(1), 1–16.

    CAS  Google Scholar 

  • Ba-Alawi, A. H., Vilela, P., Loy-Benitez, J., Heo, S., & Yoo, C. (2021). Intelligent sensor validation for sustainable influent quality monitoring in wastewater treatment plants using stacked denoising autoencoders. Journal of Water Process Engineering, 43, 102206.

    Article  Google Scholar 

  • Baklouti, I., Mansouri, M., Hamida, A. B., Nounou, H., & Nounou, M. (2018). Monitoring of wastewater treatment plants using improved univariate statistical technique. Process Safety and Environmental Protection, 116, 287–300.

    Article  CAS  Google Scholar 

  • Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10), 2385–2404.

    Article  CAS  Google Scholar 

  • Benedetti, L., Langeveld, J., Comeau, A., Corominas, L., Daigger, G., Martin, C., ... & Vanrolleghem, P. A. (2013). Modelling and monitoring of integrated urban wastewater systems: Review on status and perspectives. Water Science and Technology68(6), 1203–1215.

  • Caccavale, F., Digiulio, P., Iamarino, M., Masi, S., & Pierri, F. (2010). A neural network approach for on-line fault detection of nitrogen sensors in alternated active sludge treatment plants. Water Science and Technology, 62(12), 2760–2768.

    Article  CAS  Google Scholar 

  • Carlsson, B., & Zambrano, J. (2016). Fault detection and isolation of sensors in aeration control systems. Water Science and Technology, 73(3), 648–653.

    Article  Google Scholar 

  • Che Mid, E., & Dua, V. (2018). Fault detection in wastewater treatment systems using multiparametric programming. Processes, 6(11), 231.

    Article  Google Scholar 

  • Chen, A., Zhou, H., An, Y., & Sun, W. (2016, June). PCA and PLS monitoring approaches for fault detection of wastewater treatment process. In 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE) (pp. 1022–1027). IEEE. https://doi.org/10.1109/ISIE.2016.7745032

  • Cheng, H., Wu, J., Liu, Y., & Huang, D. (2019). A novel fault identification and root-causality analysis of incipient faults with applications to wastewater treatment processes. Chemometrics and Intelligent Laboratory Systems, 188, 24–36.

    Article  CAS  Google Scholar 

  • Cheng, H., Liu, Y., Huang, D., Pan, Y., & Wang, Q. (2020). Adaptive transfer learning of cross-spatiotemporal canonical correlation analysis for plant-wide process monitoring. Industrial & Engineering Chemistry Research, 59(49), 21602–21614.

    Article  CAS  Google Scholar 

  • Cheng, H., Liu, Y., Huang, D., Cai, B., & Wang, Q. (2021a). Rebooting kernel CCA method for nonlinear quality-relevant fault detection in process industries. Process Safety and Environmental Protection, 149, 619–630.

    Article  CAS  Google Scholar 

  • Cheng, H., Wu, J., Huang, D., Liu, Y., & Wang, Q. (2021b). Robust adaptive boosted canonical correlation analysis for quality-relevant process monitoring of wastewater treatment. ISA Transactions, 117, 210–220.

    Article  Google Scholar 

  • Chiang, L. H., Russell, E. L., & Braatz, R. D. (2000). Fault detection and diagnosis in industrial systems. Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-0347-9

  • Corominas, L., Villez, K., Aguado, D., Rieger, L., Rosén, C., & Vanrolleghem, P. A. (2011). Performance evaluation of fault detection methods for wastewater treatment processes. Biotechnology and Bioengineering, 108(2), 333–344.

    Article  CAS  Google Scholar 

  • Corominas, L., Garrido-Baserba, M., Villez, K., Olsson, G., Cortés, U., & Poch, M. (2018). Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques. Environmental Modelling & Software, 106, 89–103.

    Article  Google Scholar 

  • Du, Q., Liu, S., Cao, Z., & Wang, Y. (2005). Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology, 44(3), 229–234.

    Article  CAS  Google Scholar 

  • Du, X., Wang, J., Jegatheesan, V., & Shi, G. (2018). Dissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithm. Applied Sciences, 8(2), 261.

    Article  Google Scholar 

  • Friedrich, C., Lechler, A., & Verl, A. (2014). Autonomous systems for maintenance tasks–requirements and design of a control architecture. Procedia Technology, 15, 595–604.

    Article  Google Scholar 

  • Fukunaga, K. (2013). Introduction to statistical pattern recognition. Elsevier.

    Google Scholar 

  • Garcia-Alvarez, D., Fuente, M. J., Vega, P., & Sainz, G. (2009). Fault detection and diagnosis using multivariate statistical techniques in a wastewater treatment plant. IFAC Proceedings Volumes, 42(11), 952–957.

    Article  Google Scholar 

  • Ge, Z., & Song, Z. (2010). Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE Journal, 56(11), 2838–2849.

    Article  CAS  Google Scholar 

  • Gernaey, K. V., Van Loosdrecht, M. C., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environmental Modelling & Software, 19(9), 763–783.

    Article  Google Scholar 

  • Gernaey, K. V., Jeppsson, U., Vanrolleghem, P. A., & Copp, J. B. (2014). Benchmarking of control strategies for wastewater treatment plants. London: IWA Scientific and Technical Report.

    Book  Google Scholar 

  • Guo, S., Zhu, F., Zhang, W., Żak, S. H., & Zhang, J. (2018). Fault detection and reconstruction for discrete nonlinear systems via Takagi-Sugeno fuzzy models. International Journal of Control, Automation and Systems, 16(6), 2676–2687.

    Article  Google Scholar 

  • Haimi, H., Mulas, M., Corona, F., & Vahala, R. (2013). Data-derived soft-sensors for biological wastewater treatment plants: An overview. Environmental Modelling & Software, 47, 88–107.

    Article  Google Scholar 

  • Haq, A., Srinivasan, B., & Bonvin, D. (2022). Real-time optimization of wastewater treatment plants via constraint adaptation. Processes, 10(5), 990.

    Article  Google Scholar 

  • Hong, H., Jiang, C., Peng, X., & Zhong, W. (2020). Concurrent monitoring strategy for static and dynamic deviations based on selective ensemble learning using slow feature analysis. Industrial & Engineering Chemistry Research, 59(10), 4620–4635.

    Article  CAS  Google Scholar 

  • Isermann, R., & Balle, P. (1997). Trends in the application of model-based fault detection and diagnosis of technical processes. Control Engineering Practice, 5(5), 709–719.

    Article  Google Scholar 

  • Ismail, W., Niknejad, N., Bahari, M., Hendradi, R., Zaizi, N. J. M., & Zulkifli, M. Z. (2021). Water treatment and artificial intelligence techniques: a systematic literature review research. Environmental Science and Pollution Research, 30, 71794–71812. https://doi.org/10.1007/s11356-021-16471-0

    Article  Google Scholar 

  • Jadhav, A. R., Pathak, P. D., & Raut, R. Y. (2023). Water and wastewater quality prediction: Current trends and challenges in the implementation of artificial neural network. Environmental Monitoring and Assessment, 195(2), 321.

    Article  Google Scholar 

  • Kabouris, J. C. (1999). Modeling, instrumentation, automation, and optimization of wastewater treatment facilities. Water Environment Research, 71(5), 729–736.

    Article  CAS  Google Scholar 

  • Khan, S., & Ali, J. (2018). Chemical analysis of air and water. In Bioassays (pp. 21–39). Elsevier. https://doi.org/10.1016/B978-0-12-811861-0.00002-4

  • Lee, D. S., & Vanrolleghem, P. A. (2004). Adaptive consensus principal component analysis for on-line batch process monitoring. Environmental Monitoring and Assessment, 92(1), 119–135.

    Article  CAS  Google Scholar 

  • Lee, C., Choi, S. W., & Lee, I. B. (2004a). Sensor fault identification based on time-lagged PCA in dynamic processes. Chemometrics and Intelligent Laboratory Systems, 70(2), 165–178.

    Article  CAS  Google Scholar 

  • Lee, J. M., Yoo, C., Choi, S. W., Vanrolleghem, P. A., & Lee, I. B. (2004b). Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 59(1), 223–234.

    Article  CAS  Google Scholar 

  • Li, Z., & Yan, X. (2018). Adaptive selective ensemble-independent component analysis models for process monitoring. Industrial & Engineering Chemistry Research, 57(24), 8240–8252.

    Article  CAS  Google Scholar 

  • Li, Z., & Yan, X. (2019). Complex dynamic process monitoring method based on slow feature analysis model of multi-subspace partitioning. ISA Transactions, 95, 68–81.

    Article  Google Scholar 

  • Li, Z., Tian, L., Jiang, Q., & Yan, X. (2022). Dynamic nonlinear process monitoring based on dynamic correlation variable selection and kernel principal component regression. Journal of the Franklin Institute, 359, 4513–4539.

    Article  Google Scholar 

  • Liu, Y., Pan, Y., Sun, Z., & Huang, D. (2014). Statistical monitoring of wastewater treatment plants using variational Bayesian PCA. Industrial & Engineering Chemistry Research, 53(8), 3272–3282.

    Article  CAS  Google Scholar 

  • Liu, Y., Liu, B., Zhao, X., & Xie, M. (2018). A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring. IEEE Transactions on Industrial Electronics, 65(8), 6478–6486.

    Article  Google Scholar 

  • Liu, H., Yang, J., Zhang, Y., & Yang, C. (2021). Monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares. Process Safety and Environmental Protection, 147, 274–282.

    Article  CAS  Google Scholar 

  • Marais, H. L., Zaccaria, V., & Odlare, M. (2022). Comparing statistical process control charts for fault detection in wastewater treatment. Water Science and Technology, 85(4), 1250–1262.

    Article  CAS  Google Scholar 

  • Marais, H. L., Nordlander, E., Thorin, E., Wallin, C., Dahlquist, E., & Odlare, M. (2020, May). Outlining process monitoring and fault detection in a wastewater treatment and reuse system. In 2020 European Control Conference (ECC) (pp. 558–563). IEEE. https://doi.org/10.23919/ECC51009.2020.9143659

  • Nakkasunchi, S., Hewitt, N. J., Zoppi, C., & Brandoni, C. (2021). A review of energy optimization modelling tools for the decarbonisation of wastewater treatment plants. Journal of Cleaner Production, 279, 123811.

    Article  CAS  Google Scholar 

  • Newhart, K. B., Holloway, R. W., Hering, A. S., & Cath, T. Y. (2019). Data-driven performance analyses of wastewater treatment plants: A review. Water Research, 157, 498–513.

    Article  CAS  Google Scholar 

  • NP, S. (2015). Modeling of wastewater treatment plant design for pulp and paper industry: A review. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development (IJCSEIERD), 5, 59-68.

  • Pisa, I., Morell, A., Vicario, J. L., & Vilanova, R. (2021). Transfer Learning Approach for the Design of Basic Control Loops in Wastewater Treatment Plants. In 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1–8). IEEE. https://doi.org/10.1109/ETFA45728.2021.9613360

  • Qin, S. J. (2003). Statistical process monitoring: Basics and beyond. Journal of Chemometrics: A Journal of the Chemometrics Society, 17(8–9), 480–502.

    Article  CAS  Google Scholar 

  • Qin, S. J. (2012). Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 36(2), 220–234.

    Article  Google Scholar 

  • Rong, G., Liu, S. Y., & Shao, J. D. (2013). Fault diagnosis by locality preserving discriminant analysis and its kernel variation. Computers & Chemical Engineering, 49, 105–113.

    Article  CAS  Google Scholar 

  • Sánchez-Fernández, A., Baldán, F. J., Sainz-Palmero, G. I., Benítez, J. M., & Fuente, M. J. (2018). Fault detection based on time series modeling and multivariate statistical process control. Chemometrics and Intelligent Laboratory Systems, 182, 57–69.

    Article  Google Scholar 

  • Sanchez-Fernández, A., Fuente, M. J., & Sainz-Palmero, G. I. (2015). Fault detection in wastewater treatment plants using distributed PCA methods. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA) (pp. 1–7). IEEE. https://doi.org/10.1109/ETFA.2015.7301504

  • Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press. https://mitpress.mit.edu/books/learning-kernels

  • Schraa, O., Tole, B., & Copp, J. B. (2006). Fault detection for control of wastewater treatment plants. Water Science and Technology, 53(4–5), 375–382.

    Article  CAS  Google Scholar 

  • Shang, C., Yang, F., Gao, X., Huang, X., Suykens, J. A., & Huang, D. (2015). Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis. AIChE Journal, 61(11), 3666–3682.

    Article  CAS  Google Scholar 

  • Villegas, T., Fuente, M. J., & Sainz-Palmero, G. I. (2010). Fault diagnosis in a wastewater treatment plant using dynamic independent component analysis. In 18th Mediterranean Conference on Control and Automation, MED'10 (pp. 874–879). IEEE. https://doi.org/10.1109/MED.2010.5547760

  • Wade, M. J., Sánchez, A., & Katebi, M. R. (2005). On real-time control and process monitoring of wastewater treatment plants: Real-time process monitoring. Transactions of the Institute of Measurement and Control, 27(3), 173–193.

    Article  Google Scholar 

  • Wang, B., Li, Z., Dai, Z., Lawrence, N., & Yan, X. (2019). A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant. Applied Soft Computing, 82, 105527.

    Article  Google Scholar 

  • Xiao, H., Huang, D., Pan, Y., Liu, Y., & Song, K. (2017). Fault diagnosis and prognosis of wastewater processes with incomplete data by the auto-associative neural networks and ARMA model. Chemometrics and Intelligent Laboratory Systems, 161, 96–107.

    Article  CAS  Google Scholar 

  • Xiao, H., Liu, Y., & Huang, D. (2016). Semiadaptive fault diagnosis via variational Bayesian mixture factor analysis with application to wastewater treatment. Journal of Control Science and Engineering, 2016. https://doi.org/10.1155/2016/2034826

  • Xu, C., Huang, D., Li, D., & Liu, Y. (2021). Novel process monitoring approach enhanced by a complex independent component analysis algorithm with applications for wastewater treatment. Industrial & Engineering Chemistry Research, 60(38), 13914–13926.

    Article  CAS  Google Scholar 

  • Yao, S., Zhang, C., & Yuan, H. (2022). Emerging investigator series: modeling of wastewater treatment bioprocesses: current development and future opportunities. Environmental Science: Water Research & Technology, 8(2), 208–225. https://doi.org/10.1039/D1EW00739D

    Article  CAS  Google Scholar 

  • Ye, L., Wang, J., & Zhang, Q. (2007). Genetic resampling particle filter. Acta Automatica Sinica, 33(8), 885.

    Google Scholar 

  • Yin, S., Ding, S. X., Xie, X., & Luo, H. (2014). A review on basic data-driven approaches for industrial process monitoring. IEEE Transactions on Industrial Electronics, 61(11), 6418–6428.

    Article  Google Scholar 

  • Yin, S., Xie, X., & Sun, W. (2016). A nonlinear process monitoring approach with locally weighted learning of available data. IEEE Transactions on Industrial Electronics, 64(2), 1507–1516.

    Article  Google Scholar 

  • Yoo, C. K., Villez, K., Lee, I. B., Van Hulle, S., & Vanrolleghem, P. A. (2006). Sensor validation and reconciliation for a partial nitrification process. Water Science and Technology, 53(4–5), 513–521.

    Article  CAS  Google Scholar 

  • Yu, J. (2012). A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science, 68(1), 506–519.

    Article  CAS  Google Scholar 

  • Yu, P., Cao, J., Jegatheesan, V., & Shu, L. (2019). Activated sludge process faults diagnosis based on an improved particle filter algorithm. Process Safety and Environmental Protection, 127, 66–72.

    Article  CAS  Google Scholar 

  • Zhang, L. X., Liu, Z. C., Wang, H., Qi, H. Y., & Hu, D. (2015). Particle filter method for fault diagnosis in nonlinear system. ACTA ELECTONICA SINICA, 43(3), 615.

    Google Scholar 

  • Zhao, L., Dai, T., Qiao, Z., Sun, P., Hao, J., & Yang, Y. (2020). Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Safety and Environmental Protection, 133, 169–182.

    Article  CAS  Google Scholar 

  • Zhi-Min, C., Meng-Chu, T., Pan-Long, W., Yu-Ming, B., Fu-Fei, G., & Cong, Y. (2017). Intelligent particle filter based on bat algorithm. Acta Physica Sinica, 66(5). https://doi.org/10.7498/aps.66.050502

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mr. Amir Khurshid and Dr. Ajaya Kumar Pani have jointly prepared this review article. Mr. Khurshid has collected all the relevant information from the published literature and prepared the tables and graphs in the first, second, and third sections. Abstract and the first, fourth, and fifth sections are written by Dr. Pani.

Corresponding author

Correspondence to Ajaya Kumar Pani.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurshid, A., Pani, A.K. Machine learning approaches for data-driven process monitoring of biological wastewater treatment plant: A review of research works on benchmark simulation model No. 1(BSM1). Environ Monit Assess 195, 916 (2023). https://doi.org/10.1007/s10661-023-11463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11463-8

Keywords

Navigation