Skip to main content

Advertisement

Log in

Traces of black carbon sources before and after the Covid-19 outbreak in Tehran, Iran

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentration of black carbon was measured in four sites of the industrial and high-traffic metropolis of Tehran with different land uses. Then, the contribution of biomass and fossil fuels in the emission of this pollutant was modeled using the Aethalometer model. The possible locations of important sources of black carbon dissemination were projected using PSCF and CWT models, and the results were compared in the two periods before and after the Covid-19 outbreak. Temporal variations of black carbon illustrated that BC concentration decreased in the period after the onset of the pandemic in all studied areas, and this decline was more explicit in the traffic intersection of the city. Diurnal changes of BC concentration indicated the significant impact of the application of the law banning night traffic of motor vehicles in reducing the BC concentration in this period, and probably the reduction of HDDV traffic has played the most important role in this reduction. The results related to the share of BC sources indicated that black carbon emissions are affected by an average of about 80% of fossil fuel combustion and wood combustion interferes with about 20% of BC emissions. Finally, speculations were made about the possible sources of BC emission and its urban scale transport using PSCF and CWT models, which indicated the superiority of the CWT model in terms of source segregation. The results of this analysis were further utilized to surmise black carbon emission sources based on the land use of receptor points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Amini, H., Hosseini, V., Schindler, C., Hassankhany, H., Yunesian, M., Henderson, S. B., & Künzli, N. (2017). Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran study of exposure prediction for environmental health research (Tehran SEPEHR). Environmental Pollution, 226, 219–229.

    Article  CAS  Google Scholar 

  • Arhami, M., Shahne, M. Z., Hosseini, V., Haghighat, N. R., Lai, A. M., & Schauer, J. J. (2018). Seasonal trends in the composition and sources of PM2. 5 and carbonaceous aerosol in Tehran, Iran. Environmental Pollution, 239, 69–81.

    Article  CAS  Google Scholar 

  • Bansal, O., Singh, A., & Singh, D. (2019). Characteristics of black carbon aerosols over Patiala Northwestern part of the IGP: Source apportionment using cluster and CWT analysis. Atmospheric Pollution Research, 10(1), 244–256.

    Article  CAS  Google Scholar 

  • Baumbach, G., & Vogt, U. (2003). Influence of inversion layers on the distribution of air pollutants in urban areas. Water, Air, & Soil Pollution: Focus, 3(5), 65–76.

    CAS  Google Scholar 

  • Bayat, R., Ashrafi, K., Motlagh, M. S., Hassanvand, M. S., Daroudi, R., Fink, G., & Künzli, N. (2019). Health impact and related cost of ambient air pollution in Tehran. Environmental Research, 176, 108547.

    Article  CAS  Google Scholar 

  • Begum, B. A., Kim, E., Jeong, C. H., Lee, D. W., & Hopke, P. K. (2005). Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmospheric Environment, 39(20), 3719–3724.

    Article  Google Scholar 

  • Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., & Sierau, B. (2007). Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics, 7(23), 5937–5943.

    Article  CAS  Google Scholar 

  • Coelho, S., Ferreira, J., Rodrigues, V., & Lopes, M. (2022). Source apportionment of air pollution in European urban areas: Lessons from the ClairCity project. Journal of Environmental Management, 320, 115899.

    Article  CAS  Google Scholar 

  • Deng, J., Zhao, W., Wu, L., Hu, W., Ren, L., Wang, X., & Fu, P. (2020). Black carbon in Xiamen, China: Temporal variations, transport pathways and impacts of synoptic circulation. Chemosphere, 241, 125133.

    Article  CAS  Google Scholar 

  • DeWitt, H. L., Gasore, J., Rupakheti, M., Potter, K. E., Prinn, R. G., Ndikubwimana, J. D. D., Nkusi, J., & Safari, B. (2019). Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda Climate Observatory. Atmospheric Chemistry and Physics, 19, 2063–2078.

    Article  CAS  Google Scholar 

  • Drinovec, L. Močnik, G. Zotter, P. Prévôt, A. S. H. Ruckstuhl, C. Coz, E. ... & Hansen, A. D. A. (2015). The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric measurement techniques8(5), 1965–1979.‏

  • Drinovec, L. Gregorič, A. Zotter, P. Wolf, R. Bruns, E. A. Prévôt, A. S. ... & Močnik, G. (2017). The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles. Atmospheric Measurement Techniques10(3), 1043–1059.‏

  • Duc, H. N., Shingles, K., White, S., Salter, D., Chang, L. T. C., Gunashanhar, G., ... & Kirkwood, J. (2020). Spatial-temporal pattern of black carbon (BC) emission from biomass burning and anthropogenic sources in New South Wales and the greater metropolitan region of Sydney, Australia. Atmosphere11(6), 570.‏

  • Hansen, A. D. A. (2005). The aethalometer Magee scientific Company Berkeley. California, USA.‏

  • Hansen, A. D. A., Rosen, H., & Novakov, T. (1984). The aethalometer an instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment, 36(JUN), 191–196.

    Article  CAS  Google Scholar 

  • Helin, A. Niemi, J. V. Virkkula, A. Pirjola, L. Teinilä, K. Backman, J. ... & Timonen, H. (2018). Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmospheric Environment190, 87–98.‏

  • Herich, H., Hueglin, C., & Buchmann, B. (2011). A 2.5 year’s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmospheric Measurement Techniques, 4(7), 1409–1420.

    Article  CAS  Google Scholar 

  • Hosseini, V., & Shahbazi, H. (2016). Urban air pollution in Iran. Iranian Studies, 49(6), 1029–1046.

    Article  Google Scholar 

  • Hsu, Y. K., Holsen, T. M., & Hopke, P. K. (2003). Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmospheric Environment, 37(4), 545–562.

    Article  CAS  Google Scholar 

  • Janhäll, S., Olofson, K. F. G., Andersson, P. U., Pettersson, J. B., & Hallquist, M. (2006). Evolution of the urban aerosol during winter temperature inversion episodes. Atmospheric Environment, 40(28), 5355–5366.

    Article  Google Scholar 

  • Jing, A., Zhu, B., Wang, H., Yu, X., An, J., & Kang, H. (2019). Source apportionment of black carbon in different seasons in the northern suburb of Nanjing, China. Atmospheric Environment, 201, 190–200.

    Article  CAS  Google Scholar 

  • Jonidi Jafari, A., & Arfaeinia, H. (2016). The share of different vehicles in air pollutant emission in Tehran, Using 2013 traffic information. Caspian Journal of Health Research, 2(2), 28–36.

    Article  Google Scholar 

  • Joshi, H. Naja, M. Singh, K. P. Kumar, R. Bhardwaj, P. Babu, S. S. ... & Chandola, H. C. (2016). Investigations of aerosol black carbon from a semi-urban site in the Indo-Gangetic Plain region. Atmospheric Environment125, 346–359.‏

  • Kalogridis, A. C., Vratolis, S., Liakakou, E., Gerasopoulos, E., Mihalopoulos, N., & Eleftheriadis, K. (2018). Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece. Atmospheric Chemistry and Physics, 18(14), 10219–10236.

    Article  CAS  Google Scholar 

  • Kant, Y., Shaik, D. S., Mitra, D., Chandola, H. C., Babu, S. S., & Chauhan, P. (2020). Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing. Environmental Pollution, 257, 113446.

    Article  CAS  Google Scholar 

  • Kim, I. S., Wee, D., Kim, Y. P., & Lee, J. Y. (2016). Development and application of three-dimensional potential source contribution function (3D-PSCF). Environmental Science and Pollution Research, 23, 16946–16954.

    Article  CAS  Google Scholar 

  • Kirchstetter, T. W., Novakov, T., & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres, 109(D21).‏

  • MohseniBandpi, A., Eslami, A., Ghaderpoori, M., Shahsavani, A., Jeihooni, A. K., Ghaderpoury, A., & Alinejad, A. (2018). Health risk assessment of heavy metals on PM2. 5 in Tehran air, Iran. Data in Brief, 17, 347–355.

    Article  Google Scholar 

  • Mousavi, A., Sowlat, M. H., Hasheminassab, S., Polidori, A., & Sioutas, C. (2018). Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Science of the Total Environment, 640, 1231–1240.

    Article  Google Scholar 

  • Nabizadeh, R., Yousefi, M., & Azimi, F. (2018). Study of particle number size distributions at Azadi terminal in Tehran, comparing high-traffic and no traffic area. MethodsX, 5, 1549–1555.

    Article  Google Scholar 

  • Pani, S. K., Wang, S. H., Lin, N. H., Chantara, S., Lee, C. T., & Thepnuan, D. (2020). Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environmental Pollution, 259, 113871.

    Article  CAS  Google Scholar 

  • Pérez, N., Pey, J., Cusack, M., Reche, C., Querol, X., Alastuey, A., & Viana, M. (2010). Variability of particle number, black carbon, and PM10, PM2.5, and PM1 levels and speciation: Influence of road traffic emissions on urban air quality. Aerosol Science and Technology, 44(7), 487–499.

    Article  Google Scholar 

  • Resquin, M. D., Santágata, D., Gallardo, L., Gómez, D., Rössler, C., & Dawidowski, L. (2018). Local and remote black carbon sources in the Metropolitan Area of Buenos Aires. Atmospheric Environment, 182, 105–114.

    Article  CAS  Google Scholar 

  • Saarikoski, S., Niemi, J. V., Aurela, M., Pirjola, L., Kousa, A., Rönkkö, T., & Timonen, H. (2021). Sources of black carbon at residential and traffic environments obtained by two source apportionment methods. Atmospheric Chemistry and Physics, 21(19), 14851–14869.

    Article  CAS  Google Scholar 

  • Sandradewi, J. Prévôt, A. S. Szidat, S. Perron, N. Alfarra, M. R. Lanz, V. A. ... & Baltensperger, U. R. S. (2008). Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environmental Science & Technology42(9), 3316–3323.

  • Shahbazi, H., Taghvaee, S., Hosseini, V., & Afshin, H. (2016). A GIS based emission inventory development for Tehran. Urban Climate, 17, 216–229.

    Article  Google Scholar 

  • Shen, L., Wang, H., Kong, X., Yin, Y., Chen, K., & Chen, J. (2021). Characterization of black carbon aerosol at the summit of Mount Tai (1534 m) in central east China: Temporal variation, source appointment and transport. Atmospheric Environment, 246, 118152.

  • Stathopoulos, V. K., Evangeliou, N., Stohl, A., Vratolis, S., Matsoukas, C., & Eleftheriadis, K. (2021). Large circulation patterns strongly modulate long-term variability of arctic black carbon levels and areas of origin. Geophysical Research Letters, 48(19), e2021GL092876.

    Article  Google Scholar 

  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077.

    Article  Google Scholar 

  • Stohl, A. (1996). Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmospheric Environment, 30(4), 579–587.

    Article  CAS  Google Scholar 

  • Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media.‏ ‏

  • Taghvaee, S., Sowlat, M. H., Mousavi, A., Hassanvand, M. S., Yunesian, M., Naddafi, K., & Sioutas, C. (2018). Source apportionment of ambient PM2. 5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Science of the Total Environment, 628, 672–686.

    Article  Google Scholar 

  • Taheri, A., Aliasghari, P., & Hosseini, V. (2019). Black carbon and PM2.5 monitoring campaign on the roadside and residential urban background sites in the city of Tehran. Atmospheric Environment, 218, 116928.

    Article  CAS  Google Scholar 

  • Tayyebi, A., Shafizadeh-Moghadam, H., & Tayyebi, A. H. (2018). Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. Land Use Policy, 71, 459–469.

    Article  Google Scholar 

  • Wang, Z., Yu, H., Liang, W., Wang, F., Wang, G., Chen, D., ... & Shi, G. (2022). Ensemble source apportionment of air pollutants and carbon dioxide based on online measurements. Journal of Cleaner Production370, 133468.‏

  • Xiao, S., Yu, X., Zhu, B., Kumar, K. R., Li, M., & Li, L. (2020). Characterization and source apportionment of black carbon aerosol in the Nanjing Jiangbei New Area based on two years of measurements from Aethalometer. Journal of Aerosol Science, 139, 105461.

    Article  CAS  Google Scholar 

  • Yeganeh, B., Khuzestani, R. B., Taheri, A., & Schauer, J. J. (2021). Temporal trends in the spatial-scale contributions to black carbon in a Middle Eastern megacity. Science of the Total Environment, 792, 148364.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate Tehran Air Quality Control Company (TAQCC) staff for their valuable effort in gathering and amalgamation of air quality data through their accessible air quality monitoring network.

Author information

Authors and Affiliations

Authors

Contributions

1). Sam Dehhaghi wrote the main manuscript text and conducted the statistical analysis of the study.

2). Hossein Bahiraee gathered required information regarding the datasets and methodology.

3). Alireza Pardakhti supervised this study.

4). Yousef Rashidi proposed the main idea of this research.

All authors reviewed the manuscript.

Corresponding author

Correspondence to Sam Dehhaghi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1486 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehhaghi, S., Bahiraee, H., Pardakhti, A. et al. Traces of black carbon sources before and after the Covid-19 outbreak in Tehran, Iran. Environ Monit Assess 195, 853 (2023). https://doi.org/10.1007/s10661-023-11442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11442-z

Keywords

Navigation