Skip to main content

Advertisement

Log in

Simulating with a combination of RUSLE GIS and sediment delivery ratio for soil restoration

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Erosion by water is the main cause of land degradation. Landscapes degraded by erosion need to be restored in many respects, and particularly in terms of ecosystem services. From an economic and management perspective, care is needed to select priority areas and determine the means to be applied to restore them. Globally, the model most commonly used to produce scenarios for the prevention of soil losses is the Revised Universal Soil Loss Equation (RUSLE). This study of the subbasin of the Sulakyurt Dam Basin in Turkey aims (1) to identify the distribution of soil losses over time and by location, and (2) to grade the priority areas for the prevention of soil losses by means of a simulation. The average potential soil losses in the area under study are estimated at 42.35 t ha−1 year−1, and the average actual losses at 39.49 t ha−1 year−1. According to the simulation, 27.61% of the study area (2782 ha) is of the highest priority for soil restoration. In our study, forests have the highest soil losses, which is contrary to the natural protection that forests provide against erosion. The high rates are due to the slope, the forest area is very steep. So it is the slope factor that outweighs the vegetation cover factor. Of the forest areas, 41.74% (1766 ha) falls within the areas of highest priority. The study serves as a guide for landscape planning and the determination of erosion risk in restoration efforts, and for identifying the methods to be adopted during the restoration work to reduce the loss of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data of the current research is available from the corresponding author on request.

References

  • Aga, A. O., Chane, B., & Melesse, A. M. (2018). Soil erosion modelling and risk assessment in data scarce rift valley lake regions. Ethiopia. Water, 10(11), 1684. https://doi.org/10.3390/w10111684

    Article  Google Scholar 

  • Aksoy, H., & Kavvas, M. L. (2005). A review of hillslope and watershed scale erosion and sediment transport models. CATENA, 64(2–3), 247–271. https://doi.org/10.1016/j.catena.2005.08.008

    Article  Google Scholar 

  • Başaran, M., Erpul, G., Tercan, A. E., & Çanga, M. R. (2008). The effects of land use changes on some soil properties in İndağı Mountain Pass-Çankırı, Turkey. Environmental Monitoring and Assessment, 136(1), 101–119. https://doi.org/10.1007/s10661-007-9668-4

    Article  CAS  Google Scholar 

  • Bayramin, İ., Erpul, G., & Erdoğan, H. E. (2006). Use of CORINE methodology to assess soil erosion risk in the semi-arid area of Beypazari, Ankara. Turkish Journal of Agriculture and Forestry, 30(2), 81–100. Available at: https://journals.tubitak.gov.tr/agriculture/vol30/iss2/1. Accessed 24 Apr 2020.

  • Benavidez, R. A. (2018). Understanding the effect of changing land use on floods and soil erosion in the Cagayan de Oro catchment (Unpublished doctoral dissertation). Doctor of Philosophy, Victoria University of Wellington, New Zealand.

  • Biddoccu, M., Ferraris, S., Opsi, F., & Cavallo, E. (2016). Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil and Tillage Research, 155, 176–189. https://doi.org/10.1016/j.still.2015.07.005

    Article  Google Scholar 

  • Bogunovic, I., Pereira, P., Kisic, I., et al. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). CATENA, 160, 376–384. https://doi.org/10.1016/j.catena.2017.10.009

    Article  Google Scholar 

  • Borrelli, P., Robinson, D. A., Fleischer, L. R., et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 1–13. https://doi.org/10.1038/s41467-017-02142-7

    Article  CAS  Google Scholar 

  • Cerdà, A. (1996). Soil aggregate stability in three Mediterranean environments. Soil Technology, 9(3), 133–140. https://doi.org/10.1016/S0933-3630(96)00008-6

    Article  Google Scholar 

  • Cerdan, O., Govers, G., Le Bissonnais, Y., et al. (2010). Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology, 122(1–2), 167–177. https://doi.org/10.1016/j.geomorph.2010.06.011

    Article  Google Scholar 

  • De Groot, R. (2006). Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landscape and Urban Planning, 75(3–4), 175–186. https://doi.org/10.1016/j.landurbplan.2005.02.016

    Article  Google Scholar 

  • Dönmez, A. A. (2002). Flora of Karagüney Mountain (Kırıkkale). Turkish Journal of Botany, 26(6), 417–451. Available at: https://journals.tubitak.gov.tr/botany/vol26/iss6/2. Accessed 18 June 2020.

  • Erdogan, E. H., Erpul, G., & Bayramin, İ. (2007). Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed. Environmental Monitoring and Assessment, 131(1), 153–161. https://doi.org/10.1007/s10661-006-9464-6

    Article  Google Scholar 

  • Erpul, G., Şahin, S., Akgöz, R., et al. (2016). Türkiye Yağışlarının Özellikleri ve Yenilenmiş Evrensel Toprak Kayıpları Eşitliği (YETKE) R Faktörü, General Directorate of Combating Desertification and Erosion: Ankara, pp. 10–22.

  • Erpul, G., Şahin, S., İnce, K., et al. (2018). Türkiye Su Erozyonu Atlası, Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları: Ankara, pp. 24.

  • Erpul, G., İnce, K., Demirhan, A., Küçümen, A., Akdağ, M. A., Demirtaş, İ., Sarıhan B., Çetin, E., Şahin, S. (2020). Su Erozyonu İl Istatistikleri-Toprak Erozyonu Kontrol Stratejileri (Sürdürülebilir Arazi/Toprak Yönetimi Uygulama ve Yaklaşımları) (p. 284). Ankara: Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü Yayınları.

  • Evcimen, E. (2011). Sulakyurt (Kırıkkale) Dolayının Jeolojisi ve Sulakyurt Granitinin Kesmetaş Olarak Değerlendirilmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.

  • Ferro, V., Bagarello, V., Di Stefano, C., et al. (2001). Monitoring and predicting sediment yield in a small Sicilian basin. Transactions of the ASAE, 44(3), 585. https://doi.org/10.13031/2013.6119

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Foster, G. R., McCool, D. K., Renard, K. G., & Moldenhauer, W. C. (1981). Conversion of universal soil loss equation to SL metric units. Journal of Soil and Water Conservation, 36, 355–435.

    Google Scholar 

  • Galdino, S., Sano, E. E., Andrade, R. G., et al. (2016). Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degradation & Development, 27(3), 773–784. https://doi.org/10.1002/ldr.2414

    Article  Google Scholar 

  • Ganasri, B. P., & Ramesh, H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(6), 953–961. https://doi.org/10.1016/j.gsf.2015.10.007

    Article  Google Scholar 

  • Issaka, S., & Ashraf, M. A. (2017). Impact of soil erosion and degradation on water quality: A review. Geology, Ecology, and Landscapes, 1(1), 1–11. https://doi.org/10.1080/24749508.2017.1301053

    Article  Google Scholar 

  • Kavian, A., HoseinpoorSabet, S., Solaimani, K., & Jafari, B. (2017). Simulating the effects of land use changes on soil erosion using RUSLE model. Geocarto International, 32(1), 97–111. https://doi.org/10.1080/10106049.2015.1130083

    Article  Google Scholar 

  • Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. https://doi.org/10.1002/ldr.472

    Article  Google Scholar 

  • Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18(5), 1481–1493. https://doi.org/10.1007/s10113-018-1290-1

    Article  Google Scholar 

  • Mabit, L., Meusburger, K., Fulajtar, E., & Alewell, C. (2013). The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011). Earth-Science Reviews, 127, 300–307. https://doi.org/10.1016/j.earscirev.2013.05.008

    Article  CAS  Google Scholar 

  • Madenoğlu, S., & Erpul, G. (2018). Yarı Kurak Bölgelerde Farklı Arazi Kullanımlarında Toprak Erozyon Duyarlılığının Belirlenmesi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi , 1. Uluslararası Tarımsal Yapılar ve Sulama Kongresi Özel Sayısı, 484-493. Retrieved from https://dergipark.org.tr/en/pub/sduzfd/issue/40528/455851. Accessed 08 June 2020.

  • Maetens, W., Vanmaercke, M., Poesen, J., et al. (2012). Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: A meta-analysis of plot data. Progress in Physical Geography, 36(5), 599–653. https://doi.org/10.1177/0309133312451303

    Article  Google Scholar 

  • Marques, M. J., Schwilch, G., Lauterburg, N., et al. (2016). Multifaceted impacts of sustainable land management in drylands: A review. Sustainability, 8(2), 177. https://doi.org/10.3390/su8020177

    Article  Google Scholar 

  • MGM. (2020). Sıcaklık ve Yağış Verileri. Ankara: Meterolojii Genel Müdürlüğü.

  • Mohammed, S., Alsafadi, K., Talukdar, S., et al. (2020). Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sensing Applications: Society and Environment, 20, 100375. https://doi.org/10.1016/j.rsase.2020.100375

    Article  Google Scholar 

  • Morgan, R. P. C. (2009). Soil erosion and conservation (p. 304). John Wiley & Sons.

    Google Scholar 

  • Mukharamova, S., Saveliev, A., Ivanov, M., Gafurov, A., & Yermolaev, O. (2021). Estimating the soil erosion cover-management factor at the European part of Russia. ISPRS International Journal of Geo-Information, 10(10), 645. https://doi.org/10.3390/ijgi10100645

    Article  Google Scholar 

  • Napoli, M., Cecchi, S., Orlandini, S., et al. (2016). Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE. CATENA, 145, 246–256. https://doi.org/10.1016/j.catena.2016.06.018

    Article  Google Scholar 

  • NRCS. (2003). National resources inventory: Soil erosion. Washington: US Department of Agriculture, National Resources Conservation Service.

    Google Scholar 

  • Nyssen, J., Vandenreyken, H., Poesen, J., et al. (2005). Rainfall erosivity and variability in the Northern Ethiopian Highlands. Journal of Hydrology, 311(1–4), 172–187. https://doi.org/10.1016/j.jhydrol.2004.12.016

    Article  Google Scholar 

  • Ogawa, S., Saito, G., Mino, N., Uchida, S., Khan, N. M., & Shafiq, M. (1997). Estimation of soil erosion using USLE and Landsat TM in Pakistan (ACRS 1–5). In Asian Conference for Remote Sensing (ACRS). Retrieved from https://www.GISdevelopment.net. Aaccessed 20 Mar 2021.

  • Owonaiye, O. (2012). Landscape planning as a means of controlling erosion (a case study of Oke-Ogba layout in Akure, Ondo State). Available from: www.academia.edu, https://www.academia.edu/17472427/LANDSCAPE_PLANNING_AS_A_MEANS_OF_CONTROLLING_EROSION. Accessed 20 Feb 2020.

  • Özcan, A. U., & Aytaş, İ. (2020). Effects of soil erosion on doline lake degradation within karst landscapes: Bakkal Lake, Turkey. Environmental Monitoring and Assessment, 192(2), 1–16. https://doi.org/10.1007/s10661-020-8081-0

    Article  Google Scholar 

  • Özcan, A. U., Erpul, G., Başaran, M., & Erdoğan, H. E. (2008). Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass—Cankırı. Turkey. Environmental Geology, 53(8), 1731–1741. https://doi.org/10.1007/s00254-007-0779-6

    Article  Google Scholar 

  • Özcan, A. U., & Ediş, S. (2016). Effect of different land uses on soil erosion losses in semi arid region Idris Mountain Ankara. In International Forestry Symposium, IFS2016, 441–446, Kastamonu, TURKEY.

  • Özcan, A. U. (2021). Sulakyurt Kalıntı Anadolu Palamut Meşesi (Quercus ithaburensis Decne subsp. macrolepis (Kotschy) Hedge & Yalt.) Ormanı, tehditler ve koruma önerileri. Turkish Journal of Forestry22(1), 8–16. https://doi.org/10.18182/tjf.842491

  • Panagos, P., Borrelli, P., Poesen, J., et al. (2015a). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., Meusburger, K., et al. (2015b). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science & Policy, 51, 23–34. https://doi.org/10.1016/j.envsci.2015.03.012

    Article  Google Scholar 

  • Panagos, P., Borrelli, P., & Meusburger, K. (2015c). A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences, 5(2), 117–126. https://doi.org/10.3390/geosciences5020117

    Article  Google Scholar 

  • Panagos, P., Ballabio, C., Meusburger, K., et al. (2017). Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. Journal of Hydrology, 548, 251–262. https://doi.org/10.1016/j.jhydrol.2017.03.006

    Article  Google Scholar 

  • Pena, S. B., Abreu, M. M., Magalhães, M. R., & Cortez, N. (2020). Water erosion aspects of land degradation neutrality to landscape planning tools at national scale. Geoderma, 363, 114093. https://doi.org/10.1016/j.geoderma.2019.114093

    Article  Google Scholar 

  • Pınar, M. Ö., Şahin, S., Madenoğlu, S., & Erpul, G. (2020). Derinöz Baraj Havzası’nda şiddetli erozyon alanlarının belirlenmesi ve rezervuar sediment yükünün hesaplanmasi. Su Kaynakları, 5(2), 16–23.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30–33.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1996). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In Agriculture handbook, USDA, 703 (p. 384).Washington, USA.

  • Ruhe, R. V. (1969). Quaternary Landscapes in Iowa (pp. 2–55). Iowa State Univ. Press, Ames.

  • Saygın, S. D., Ozcan, A. U., Basaran, M., et al. (2014). The combined RUSLE/SDR approach integrated with GIS and geostatistics to estimate annual sediment flux rates in the semi-arid catchment, Turkey. Environmental Earth Sciences, 71(4), 1605–1618. https://doi.org/10.1007/s12665-013-2565-y

    Article  Google Scholar 

  • Schertz, D. L. (1983). The basis for soil loss tolerances. Journal of Soil and Water Conservation, 38(1), 10–14.

    Google Scholar 

  • Sun, W., Shao, Q., Liu, J., & Zhai, J. (2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. CATENA, 121, 151–163. https://doi.org/10.1016/j.catena.2014.05.009

    Article  Google Scholar 

  • Torri, D., Poesen, J., & Borselli, L. (1997). Predictability and uncertainty of the soil erodibility factor using a global dataset. CATENA, 31(1–2), 1–22. https://doi.org/10.1016/S0341-8162(97)00036-2

    Article  Google Scholar 

  • Toy, T. J., & Foster, G. R. (1998). In J. R.Galetevic (Ed.), Guidelines for the revised universal soil loss equation (RUSLE) version 1.06 on mined lands, construction sites and reclaimed lands. U.S. Office of Surface Mining, Denver, CO, p. 149. USA.

  • USGS. (2020). Sentinel 2B images from the Copernicus Data and Information Access Services. Available online: URL https://earthexplorer.usgs.gov/. Accessed 03 Jan 2020.

  • Van der Knijff, J. M. F., Jones, R. J. A., & Montanarella, L. (1999). Soil erosion risk assessment in Italy. Brussels: European Soil Bureau, European Commission.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. Department of Agriculture, Science and Education Administration, USDA Handbook, Washington, pp. 537. USA.

  • Wu, R., & Tiessen, H. (2002). Effect of land use on soil degradation in alpine grassland soil, China. Soil Science Society of America Journal, 66(5), 1648–1655. https://doi.org/10.2136/sssaj2002.1648

    Article  CAS  Google Scholar 

  • Yang, X., Zhang, X., Lv, D., et al. (2020). Remote sensing estimation of the soil erosion cover-management factor for China’s Loess Plateau. Land Degradation & Development, 31(15), 1942–1955. https://doi.org/10.1002/ldr.3577

    Article  Google Scholar 

  • Yılmaz, E., & Çiçek, İ. (2018). Detailed Köppen-Geiger climate regions of Turkey Türkiye’nin detaylandırılmış Köppen-Geiger iklim bölgeleri. Journal of Human Sciences, 15(1), 225–242. Retrieved from https://www.j-humansciences.com/ojs/index.php/IJHS/article/view/5040. Accessed 02 May 2020.

  • Yılmaz, E. (2006). Çamlıdere Barajı Havzasında Erozyon Problemi ve Risk Analizi. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara.

  • Zare, M., NazariSamani, A. A., Mohammady, M., et al. (2017). Investigating effects of land use change scenarios on soil erosion using CLUE-s and RUSLE models. International Journal of Environmental Science and Technology, 14(9), 1905–1918. https://doi.org/10.1007/s13762-017-1288-0

    Article  Google Scholar 

  • Zhao, W., Fu, B., & Qiu, Y. (2013). An upscaling method for cover-management factor and its application in the loess plateau of China. International Journal of Environmental Research and Public Health, 10(10), 4752–4766. https://doi.org/10.3390/ijerph10104752

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.Ö., A.U.Ö, and İ.A.; methodology, A.Ö., A.U.Ö., J.V., and G.T.; software, A.Ö. and A.U.Ö.; formal analysis, A.Ö., A.U.Ö., İ.A., and G.T.; investigation, J.M.M., G.T., and J.V.; resources, A.Ö. and A.U.Ö.; data curation, A.Ö.; writing—original draft preparation, all authors; writing—review and editing, all authors; visualization, A.Ö., J.V., J.M.M., V.R and D.G.; supervision, D.G.; project administration, A.Ö. and A.U.Ö. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to İbrahim Aytaş.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, A., Özcan, A.U., Aytaş, İ. et al. Simulating with a combination of RUSLE GIS and sediment delivery ratio for soil restoration. Environ Monit Assess 195, 719 (2023). https://doi.org/10.1007/s10661-023-11321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11321-7

Keywords

Navigation