Skip to main content
Log in

Analysis and comparison of wellhead protection areas delimitation methods applying a stochastic MODFLOW model as a reference

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sustainable use of groundwater while maintaining economic and social development is a major challenge, and the implementation of wellhead protection areas (WHPA) for public supply wells has been applied as an instrument to overcome it. This study analyzes the WHPA delineation methods: calculated fixed radius (CFR) and two solutions of the WhAEM software (USEPA, 2018), one analytical and one semi-analytical. We compare their results with WHPAs generated by a stochastic three-dimensional MODFLOW-MODPATH model in two scenarios: eight pumping wells operating simultaneously and a single well pumping, both at the same public drinking water supply wellfield located on a coastal plain in Jaguaruna County, south Brazil. For the specific hydrogeological settings, all methods produced satisfactory results when delineating a 50-day time-of-travel (TOT) WHPA for a single well. However, as TOT increases, uncertainties are introduced, and the precision of the results is reduced. Multiple well pumping simultaneously presented similar issues regarding uncertainties caused by three-dimensional flow complexities resulting from well interferences. Despite being the simplest method applied in terms of hydrogeological data needs, the CFR method demonstrated reliability in its results. Additionally, we present an analysis comparing the dimensions of the capture zone with the 10- and 20-year TOT WHPAs, indicating that managing the entire capture zone is the best way to protect groundwater against conservative contaminants. Finally, we compare WHPA generated by a stochastic and a deterministic model to understand how uncertainties can affect model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author, Bofill, L.M., upon reasonable request.

References

  • Aquaveo. (2014). Software GMS 10.0 Groundwater Modeling System. https://www.aquaveo.com/announcements

  • Aquaveo. (2016b). GMS 10.1 Tutorial: MODFLOW – stochastic modeling, Indicator Simulations. 9 p.

  • Bear, J., & Cheng, A. F. D. (2010). Modeling groundwater flow and contaminant transport: Theory and applications of transport in porous media (Vol. 23). Publisher.

    Book  Google Scholar 

  • Carvalho, A. M., & Hirata, R. (2012). Avaliação de métodos para a proteção dos poços de abastecimento público do Estado de São Paulo. Geologia USP. Série Científica12(1), 53-70.

  • Chave, P., Howard, G., Schijven, J., Appleyard, S., Fladerer, F., & Schimon, W. (2006). Groundwater protection zones. In: World health organization. Protecting groundwater for health: Managing the quality of drinking-water sources. Edited by O. Schmoll, G. Howard, J. Chilton and I. Chorus. P. 465 – 515. ISBN: 1843390795.

  • Doherty, P. (1994). PEST. Corinda, Australia: Watermark computing.

  • Dong, Y., Xu, H., & Li, G. (2013). Wellhead protection área delineation using multiple methods: A case study in Beijing (pp. 481–488). Springer.

    Google Scholar 

  • ESRI. (2011). ArcGIS Desktop Release 10. Redlands, CA: Environmental Systems Research Institute.

  • Falkenmark, M. (2005). Water usability degradation – Economist wisdom or societal madness? Water International, 30(2), 136–146. https://doi.org/10.1080/02508060508691854

    Article  CAS  Google Scholar 

  • Fileccia, A. (2015). Some simple procedures for the calculation of the influence radius and well head protection areas (theoretical approach and a filed case for a water table aquifer in an alluvial pain). Acque Sotterranee – Italian Journal of Groundwater (2015) – AS14065:007 – 23.

  • Frind, E. O., & Molson, J. W. (2018). Issues and options in the delineation of well capture zones under uncertainty. Groundwater, National Ground Water Association. February, 2018. 12 p.

  • Foster, S., Hirata, R., Gomes, D., Délia, M., & Paris, M. (2006). Proteção da qualidade da água subterrânea: um guia para empresas de abastecimento de água, órgãos municipais e agências ambientais. Washington: Banco Mundial, 2006. 104 p.

  • Goodarzi, M., & Eslamian, S. S. (2019). Evaluation of WhAEM and MODFLOW models to determine the protection zone of drinking wells. Environmental Earth Sciences78(6), 195.

  • Goovaerts, P., (2007). Geostatistical modeling of the spaces of local, spatial, and response uncertainty for continuous petrophysical properties. Chapter 6 in: COBURN, T.C.; YARUS, J.M., CHAMBERS, R.L., 2007. Stochastic modeling and geostatistics: Principles, methods, and case studies, Volume II.

  • Harbaugh, A. H., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). MODFLOW-2000, U.S. Geological Survey.

  • Hirata, R., & Suhogusoff, A. V. (2019). How much do we know about the groundwater quality and its impact on Brazilian society today? Acta Limnologica Brasiliensia., 31, e109.

    Article  Google Scholar 

  • Hiscock, K. M., Rivett, M. O., & Davison, R. M. (2002). Sustainable Groundwater Development. Geological Society, London, Special Publications, 193, 1–14. https://doi.org/10.1144/GSL.SP.2002.193.01.01

    Article  Google Scholar 

  • Iman, R. L., & Conover, W. (1980). Small sample sensitivity analysis techniques for computer models with an application to risk assessment. Commun. Stat. Theory Methods, 9(17), 1749–1842.

    Article  Google Scholar 

  • Kinzelbach, W., Vassolo, S., & Li, G. (1996). Determination of capture zones of wells by Monte Carlo simulation. Calibration and reliability in groundwater modelling (Proceedings of the ModelCARE 96 Conference, Golden, Colorado. IAHS Publ. no 237, 1996.

  • Kraemer, S. R., & Haitjema, H. M. (2018). Working with WhAEM: Demonstration of capture zone delineation for a city wellfield in a valley fill glacial outwash aquifer for wellhead protection. Office of Research and Development U.S. Environmental Protection Agency. Washington, DC. June, 2018.

  • Landmeyer, J. E. (1994). Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina. U.S. Geological Survey, Water-Resources Investigation Report 94–4012. Columbia, South Carolina.

  • Liu, Y., Weisbrod, N., & Yakirevich, A. (2019). Comparative study of methods for delineating the wellhead protection area in an unconfined coastal aquifer. Water, MDPI. 17 p.

  • Martin, L., Suquio, K., Flexor, J. M., & De Azevedo, A. E. G. (1988). MAPA GEOLÓGICO DO QUATERNÁRIO COSTEIRO DOS ESTADOS DO PARANÁ E SANTA CATARINA. Ministério de Minas e energia, Série Geológica, n° 28. Seção Geologia Básica, n°18. Brasil. 1988.

  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55–61.

    Article  Google Scholar 

  • Mogheir, Y. & Tarazi, G. (2010). Comparative Identification of Wellhead Protection Areas for Municipal Supply Wells in Gaza. Journal of Water Resource and Protection, 2, 105–115. 

  • Paradis, D., Martel, R., Karanta, G., Lefebvre, R., Michaud, Y., Therrien, R., & Nastev, M. (2007). Comparative study of methods for WHPA delineation. Ground Water, 45(2), 158–167.

  • Pollock, D. W. (2017). MODPATH v7.2.01: A particle-tracking model for MODFLOW: U.S. Geological Survey Software Release, 15 December 2017. https://doi.org/10.5066/F70P0X5X

  • Sethi, R., & Di Molfetta, A. (2019). Well Head Protection Areas. Groundwater Engineering: A Technical Approach to Hydrogeology, Contaminant Transport and Groundwater Remediation, 161-168.

  • Staboultzidis, A., Dokou, Z., & Karatzas, G. P. (2016). Delineation of wellhead protection area in Crete, Greece using an analytic element model. International Conference of Efficien & Sustainable Water Systems Management toward Worth Living Development, 2nd EWaS 2016. Procedia Engineering, 162, 324–331.

    Article  Google Scholar 

  • Todd, D. K., & Mays, L. W. (2004). 4.3 Well in a uniform flow, In Groundwater hydrology, 3rd ed.; Bill, Z., Ed.; John Wiley & Sons, Inc.: New York, NY, USA. p. 656.

  • Tomazelli, L. J., & Villwock, J. A. (2000). O Cenozóico no Rio Grande do Sul: geologia da planície costeira. 375–406.

  • Tomazelli, L. J. & Villwock, J. A. (2005). Mapeamento geológico de planícies costeiras: o exemplo da costa do Rio Grande do Sul. GRAVEL. Porto Alegre, 3, 109–115.

  • Troian, G. C., Reginato, P. A. R., Senhorinho, E. M., Marcuzzo, F. F. N., Kirchheim, R. E., & Kuhn, I. A. (2017). Estimativa de recarga pelo método water table fluctuation (WTF) na porção norte do aquifero costeiro do Estado do Rio Grande do Sul. Associação Brasileiroa de Recursos Hídricos. XXII Simpósio Brasileiro de Recursos Hídricos, Florianópolis, SC, 2017.

  • UN - United Nations. (2019). The future is now: Science for achieving sustainable development. Global Sustainable Development Report. Department of Economic and Social Affairs.

  • UN - United Nations. (2002). Report of the world summit on sustainable development, Johannesburg, South Africa, 26 August – 4 September 2002, New York, 173 p.

  • USEPA. (1994). Handbook: Ground water and wellhead protection. Office of Ground Water and Drinking Water. 288 p.

  • USEPA. (2018). Wellhead Analytic Element Model (WhAEM). Environmental modeling community of practice. United States Environmental Protection Agency. www.epa.gov/ceam/wellhead-analytic-element-model-whaem

  • Villwock, J. A. (1984). Geology of the Coastal Province of Rio Grande do Sul, Southern Brazil. A synthesis. Instituto de Geociências. Portal de Periódicos UFRGS. Online version: https://seer.ufrgs.br/PesquisasemGeociencias/article/view/21711

  • Wahnfried, I., & Hirata, R. (2005). Perímetro de Proteção de Poços: uma importante ferramenta para a sustentabilidade de mananciais públicos. XIV Encontro Nacional de Perfuradores de Poços – II Simpósio de Hidrogeologia do Sudeste. 12 p.

Download references

Acknowledgements

The authors thank the National Council for Scientific and Technological Development (CNPQ) for providing the scholarship for my master’s project that made this research possible and the water supply company Jaguaruna Saneamento for providing aquifer data.

Funding

This study is supported by the National Council for Scientific and Technological Development (CNPQ) and the São Paulo Research Foundation (FAPESP) grant #2014/00844–7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Medeiros Bofill.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bofill, L.M., Suhogusoff, A.V., Ferrari, L. et al. Analysis and comparison of wellhead protection areas delimitation methods applying a stochastic MODFLOW model as a reference. Environ Monit Assess 195, 704 (2023). https://doi.org/10.1007/s10661-023-11291-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11291-w

Keywords

Navigation