Skip to main content

Advertisement

Log in

Non-stationary evaluation of runoff peaks in response to climate variability and land use change in Ferson Creek, Illinois, USA

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, we examine how surface runoff affects public safety and urban infrastructure worldwide and how human activity has significantly altered the frequency and magnitude of these events. We investigate this issue in Ferson Creek, IL, USA. Our study focuses on three specific areas of impact: (1) the primary reasons for a considerable increase in average runoff peaks, using annual maximum runoff discharge and annual maximum precipitation and temperature to evaluate the role of climate variability; (2) the effect of land use change on runoff peaks by coupling dominant land use categories with annual maximum runoff discharge; and (3) the use of return level plots as a reference to explore the watershed’s sensitivity to land use change. Our findings indicate that land use change has a greater effect on runoff peak values than climate variability in our region of interest. The agricultural areas of Ferson Creek have been most affected by the rapid transformation of about 20% of their land into developed areas. Although agricultural areas can sometimes intensify runoff peaks, their reduction has led to excessive runoff discharges in Ferson Creek, as they have higher relative infiltration capacity than developed areas. We conclude that each watershed has its own fingerprint in terms of the connection between its land use types and hydrological patterns and that the region is most sensitive to the percentage of forests. These results are essential for improving infrastructure design and risk estimation methods in the region of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abdouli, K. A., Hussein, K., Ghebreyesus, D., & Sharif, H. O. (2019). Coastal runoff in the United Arab Emirates—The hazard and opportunity. Sustainability, 11(19), 5406.

    Article  Google Scholar 

  • Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., & Hall, J. W. (2020). The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 99, 104868.

    Article  Google Scholar 

  • Ahirwal, J., Kumari, S., Singh, A. K., Kumar, A., & Maiti, S. K. (2021). Changes in soil properties and carbon fluxes following afforestation and agriculture in tropical forest. Ecological Indicators, 123, 107354.

    Article  CAS  Google Scholar 

  • Aho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists: The worldviews of AIC and BIC. Ecology, 95(3), 631–636.

    Article  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.

    Article  Google Scholar 

  • Alamdari, N., Claggett, P., Sample, D. J., Easton, Z. M., & Yazdi, M. N. (2022). Evaluating the joint effects of climate and land use change on runoff and pollutant loading in a rapidly developing watershed. Journal of Cleaner Production, 330, 129953.

    Article  CAS  Google Scholar 

  • Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C., & Batista e Silva, F., … & Rounsevell, M. D. (2017). Assessing uncertainties in land cover projections. Global Change Biology, 23(2), 767–781.

    Article  Google Scholar 

  • Amogu, O., Descroix, L., Yéro, K. S., Le Breton, E., Mamadou, I., Ali, A., & Belleudy, P. (2010). Increasing river flows in the Sahel? Water, 2(2), 170–199.

    Article  Google Scholar 

  • Angel, J. R., & Huff, F. A. (1997). Changes in heavy rainfall in midwestern United States. J. Wat. Resour. Plan. Manage. ASCE, 123(4), 246–249.

    Article  Google Scholar 

  • Aniskin, A., Mkilima, T., Shakhmov, Z., & Kozina, G. (2021). Potential impact of land-use changes on river basin hydraulic parameters subjected to rapid urbanization. Tehnički Vjesnik, 28(5), 1519–1525.

    Google Scholar 

  • Apel, H., Thieken, A. H., Merz, B., & Blöschl, G. (2004). Flood risk assessment and associated uncertainty. Natural Hazards and Earth System Sciences, 4(2), 295–308.

    Article  Google Scholar 

  • Avand, M., & Moradi, H. (2021). Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. Journal of Hydrology, 595, 125663.

    Article  Google Scholar 

  • Bastia, J., Mishra, B. K., & Kumar, P. (2021). Integrative assessment of stormwater infiltration practices in rapidly urbanizing cities: A case of Lucknow City. India. Hydrology, 8(2), 93.

    Article  Google Scholar 

  • Beshir, A. A., & Song, J. (2021). Urbanization and its impact on flood hazard: The case of Addis Ababa. Ethiopia. Natural Hazards, 109(1), 1167–1190.

    Article  Google Scholar 

  • Bobee, B. (1975). The log Pearson type 3 distribution and its application in hydrology. Water Resources Research, 11(5), 681–689.

    Article  Google Scholar 

  • Brody, S., Blessing, R., Sebastian, A., & Bedient, P. (2014). Examining the impact of land use/land cover characteristics on flood losses. Journal of Environmental Planning and Management, 57(8), 1252–1265.

    Article  Google Scholar 

  • Bronstert, A., Niehoff, D., & Bürger, G. (2002). Effects of climate and land-use change on storm runoff generation: Present knowledge and modelling capabilities. Hydrological Processes, 16(2), 509–529.

    Article  Google Scholar 

  • Changnon, S. A. (2008). Assessment of flood losses in the United States. Journal of Contemporary Water Research & Education, 138(1), 38–44.

    Article  Google Scholar 

  • Chegini, T., Li, H. Y., & Leung, L. R. (2021). HyRiver: Hydroclimate Data Retriever. Journal of Open Source Software, 6(66), 3175.

  • Cheng, L., AghaKouchak, A., Gilleland, E., & Katz, R. W. (2014). Non-stationary extreme value analysis in a changing climate. Climatic Change, 127(2), 353–369.

    Article  Google Scholar 

  • Cooley, D. (2013). Return periods and return levels under climate change. In Extremes in a changing climate (pp. 97–114). Springer, Dordrecht.

  • Daymet: Daily surface weather data on a 1-km grid for North America, version 4. ORNL DAAC. (n.d.). Retrieved June 5, 2022, from https://daac.ornl.gov/DAYMET/guides/Daymet_Daily_V4.html

  • Du, J., Qian, L., Rui, H., Zuo, T., Zheng, D., Xu, Y., & Xu, C. Y. (2012). Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. Journal of Hydrology, 464, 127–139.

    Article  Google Scholar 

  • Dutta, D., & Herath, S. (2004, July). Trend of floods in Asia and flood risk management with integrated river basin approach. In Proceedings of the 2nd international conference of Asia-Pacific hydrology and water resources Association, Singapore (Vol. 1, pp. 55–63).

  • Eisenbies, M. H., Aust, W. M., Burger, J. A., & Adams, M. B. (2007). Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians—A review. Forest Ecology and Management, 242(2–3), 77–98.

    Article  Google Scholar 

  • Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106(1), 613–627.

    Article  Google Scholar 

  • Ferson Creek Forest Preserve. Forest Preserve District of Kane County. (n.d.). Retrieved June 5, 2022, from https://kaneforest.com/location/ferson

  • Ferson-Otter Creek Watershed Plan. (n.d.). Retrieved June 5, 2022, from https://foxriverecosystem.org/Ferson-Otter/Docs/FO_FinalPlan_12-21-11-Part1.pdf

  • Forest Service. (2022). Landscape Change Monitoring System Data Explorer [Online]. Retrieved June 5, 2022, from https://apps.fs.usda.gov/lcms-viewer

  • Green, P. L., & Worden, K. (2015). Bayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in the presence of uncertainty. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 373(2051), 20140405.

    Article  Google Scholar 

  • Griffis, V. W., & Stedinger, J. R. (2007). Log-Pearson type 3 distribution and its application in flood frequency analysis. II: Parameter estimation methods. Journal of Hydrologic Engineering, 12(5), 492–500.

  • Hall, J., & Solomatine, D. (2008). A framework for uncertainty analysis in flood risk management decisions. International Journal of River Basin Management, 6(2), 85–98.

    Article  Google Scholar 

  • Hollis, G. E. (1975). The effect of urbanization on floods of different recurrence interval. Water Resources Research, 11(3), 431–435.

    Article  Google Scholar 

  • Hu, S., Fan, Y., & Zhang, T. (2020). Assessing the effect of land use change on surface runoff in a rapidly urbanized city: A case study of the central area of Beijing. Land, 9(1), 17.

    Article  Google Scholar 

  • Icsu, A. (2008). Science plan for integrated research on disaster risk: Addressing the challenge of natural and human-induced environmental hazards. International Council for Science.

    Google Scholar 

  • Janizadeh, S., Pal, S. C., Saha, A., Chowdhuri, I., Ahmadi, K., Mirzaei, S., & Tiefenbacher, J. P. (2021). Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. Journal of Environmental Management298, 113551.

  • Jha, Abhas K, Robin Bloch and Jessica Lamond (2012), Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century, World Bank Publications, Washington, DC.

  • Jung, I. W., Chang, H., & Moradkhani, H. (2010). Quantifying uncertainty in urban flooding analysis caused by the combined effect of climate and land use change scenarios. Hydrology and Earth System Sciences Discussions, 7(4), 5369–5412.

    Google Scholar 

  • Kang, I. S., Park, J. I., & Singh, V. P. (1998). Effect of urbanization on runoff characteristics of the On-Cheon Stream watershed in Pusan. Korea. Hydrological Processes, 12(2), 351–363.

    Article  Google Scholar 

  • Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in hydrology. Advances in Water Resources, 25(8–12), 1287–1304.

    Article  Google Scholar 

  • Kaushal, S. S., Mayer, P. M., Vidon, P. G., Smith, R. M., Pennino, M. J., Newcomer, T. A., & Belt, K. T. (2014). Land use and climate variability amplify carbon, nutrient, and contaminant pulses: A review with management implications. JAWRA Journal of the American Water Resources Association, 50(3), 585–614.

    Article  CAS  Google Scholar 

  • Kiprotich, P., Wei, X., Zhang, Z., Ngigi, T., Qiu, F., & Wang, L. (2021). Assessing the impact of land use and climate change on surface runoff response using gridded observations and swat+. Hydrology, 8(1), 48.

    Article  Google Scholar 

  • Laenen, A. (1980). Storm runoff as related to urbanization in the Portland, Oregon-Vancouver. Washington Area. Water-Resources Investigations Report, 80, 689.

    Google Scholar 

  • Le Roux, E., Evin, G., Eckert, N., Blanchet, J., & Morin, S. (2020). Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards. Natural Hazards and Earth System Sciences, 20(11), 2961–2977.

    Article  Google Scholar 

  • Li, B., Shi, X., Lian, L., Chen, Y., Chen, Z., & Sun, X. (2020). Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. Journal of Hydrology, 584, 124684.

    Article  Google Scholar 

  • Li, Y., & Wang, C. (2009). Impacts of urbanization on surface runoff of the Dardenne Creek watershed, St. Charles County, Missouri. Physical Geography, 30(6), 556–573.

  • Liang, Z., Li, B., Yu, Z., & Chang, W. (2011). Application of Bayesian approach to hydrological frequency analysis. Science China Technological Sciences, 54(5), 1183–1192.

    Article  Google Scholar 

  • Liu, D., Chen, X., Lian, Y., & Lou, Z. (2010). Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China. Hydrological Processes: An International Journal, 24(11), 1487–1495.

    Article  Google Scholar 

  • Liu, Y., Bi, J., & Lv, J. (2018). Future impacts of climate change and land use on multiple ecosystem services in a rapidly urbanizing agricultural basin, China. Sustainability, 10(12), 4575.

    Article  Google Scholar 

  • Liu, Z., Yao, Z., Huang, H., Wu, S., & Liu, G. (2014). Land use and climate changes and their impacts on runoff in the Yarlung Zangbo river basin. China. Land Degradation & Development, 25(3), 203–215.

    Article  Google Scholar 

  • Makowski, D., Wallach, D., & Tremblay, M. (2002). Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods. Agronomie, 22(2), 191–203.

    Article  Google Scholar 

  • Matalas, N. C. (1997). Stochastic hydrology in the context of climate change. Climatic Change, 37(1), 89–101.

    Article  Google Scholar 

  • Milly, P. C., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Stationarity is dead: Whither water management? Science, 319(5863), 573–574.

    Article  CAS  Google Scholar 

  • Miyata, S., Gomi, T., Sidle, R. C., Hiraoka, M., Onda, Y., Yamamoto, K., & Nonoda, T. (2019). Assessing spatially distributed infiltration capacity to evaluate storm runoff in forested catchments: Implications for hydrological connectivity. Science of the Total Environment, 669, 148–159.

    Article  CAS  Google Scholar 

  • Monger, F., Spracklen, V., & D., J Kirkby, M., & Schofield, L. (2022). The impact of semi-natural broadleaf woodland and pasture on soil properties and flood discharge. Hydrological Processes, 36(1), e14453.

    Article  Google Scholar 

  • Moscrip, A. L., & Montgomery, D. R. (1997). Urbanization, flood frequency, and Salmon abundance in Puget lowland streams 1. JAWRA Journal of the American Water Resources Association, 33(6), 1289–1297.

    Article  CAS  Google Scholar 

  • Muzik, I. (2002). A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall-runoff model. Journal of Hydrology, 267(1–2), 65–73.

    Article  Google Scholar 

  • Návar, J., & Synnott, T. J. (2000). Soil infiltration and land use in Linares, NL, Mexico. Terra Latinoamericana, 18(3), 255–262.

    Google Scholar 

  • Neris, J., Jiménez, C., Fuentes, J., Morillas, G., & Tejedor, M. (2012). Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain). CATENA, 98, 55–62.

    Article  Google Scholar 

  • Olcina, J., Sauri, D., Hernández, M., & Ribas, A. (2016). Flood policy in Spain: a review for the period 1983-2013. Disaster Prevention and Management, 25(1), 41–58.

  • Phien, H. N., & Ajirajah, T. J. (1984). Applications of the log Pearson type-3 distribution in hydrology. Journal of Hydrology, 73(3–4), 359–372.

    Article  Google Scholar 

  • Prestele, R., Alexander, P., Rounsevell, M. D., Arneth, A., Calvin, K., Doelman, J., & Verburg, P. H. (2016). Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Global Change Biology, 22(12), 3967–3983.

    Article  Google Scholar 

  • Ragno, E., AghaKouchak, A., Cheng, L., & Sadegh, M. (2019). A generalized framework for process-informed nonstationary extreme value analysis. Advances in Water Resources, 130, 270–282.

    Article  Google Scholar 

  • Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., & Blöschl, G. (2017). Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research, 53(7), 5209–5219.

    Article  CAS  Google Scholar 

  • Romanescu, G., Cimpianu, C. I., Mihu-Pintilie, A., & Stoleriu, C. C. (2017). Historic flood events in NE Romania (post-1990). Journal of Maps, 13(2), 787–798.

    Article  Google Scholar 

  • Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B., & AghaKouchak, A. (2018). Multihazard scenarios for analysis of compound extreme events. Geophysical Research Letters, 45(11), 5470–5480.

    Article  Google Scholar 

  • Sadegh, M., Ragno, E., & AghaKouchak, A. (2017). Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Research, 53(6), 5166–5183.

    Article  Google Scholar 

  • Sadegh, M., Vrugt, J. A., Xu, C., & Volpi, E. (2015). The stationarity paradigm revisited: Hypothesis testing using diagnostics, summary metrics, and DREAM (ABC). Water Resources Research, 51(11), 9207–9231.

    Article  Google Scholar 

  • Saghafian, B., Farazjoo, H., Bozorgy, B., & Yazdandoost, F. (2008). Flood intensification due to changes in land use. Water Resources Management, 22(8), 1051–1067.

    Article  Google Scholar 

  • Schultz, B. (2008). Water management and flood protection of the polders in the Netherlands under the impact of climate change and man-induced changes in land use. Journal of Water and Land Development, 71–94.

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 461–464.

  • Serago, J. M., & Vogel, R. M. (2018). Parsimonious nonstationary flood frequency analysis. Advances in Water Resources, 112, 1–16.

    Article  Google Scholar 

  • Serinaldi, F. (2015). Dismissing return periods! Stochastic Environmental Research and Risk Assessment, 29(4), 1179–1189.

    Article  Google Scholar 

  • Sheng, J., & Wilson, J. P. (2009). Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Natural Hazards, 48(1), 41–57.

    Article  Google Scholar 

  • Shrestha, S., Cui, S., Xu, L., Wang, L., Manandhar, B., & Ding, S. (2021). Impact of land use change due to urbanisation on surface runoff using GIS-based SCS–CN method: A case study of Xiamen city, China. Land, 10(8), 839.

    Article  Google Scholar 

  • Sinha, M. K., Baghel, T., Baier, K., Verma, M. K., Jha, R., & Azzam, R. (2019). Impact of urbanization on surface runoff characteristics at catchment scale. In Water Resources and Environmental Engineering I, (pp. 31–42). Springer, Singapore.

  • Sun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F., & Zhang, Y. (2018). The effects of land use change on soil infiltration capacity in China: A meta-analysis. Science of the Total Environment, 626, 1394–1401.

    Article  CAS  Google Scholar 

  • U.S. Geological Survey. (2020). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation). Retrieved March 10, 2022, from https://waterdata.usgs.gov/nwis/

  • IACWD (Interagency Advisory Committee on Water Data). (1982). Guidelines for Determining Flood Flow Frequency, Bulletin 17B. US Department of the Interior, US Geological Survey, Office of Water Data Coordination, Reston, Va. Retrieved June 2022, from, https://water.usgs.gov/osw/bulletin17b/dl_flow.pdf

  • Valentin, C., Agus, F., Alamban, R., Boosaner, A., Bricquet, J. P., Chaplot, V., & Vadari, T. (2008). Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use changes and conservation practices. Agriculture, Ecosystems & Environment, 128(4), 225–238.

    Article  Google Scholar 

  • Wasko, C., Nathan, R., Stein, L., & O’Shea, D. (2021). Evidence of shorter more extreme rainfalls and increased flood variability under climate change. Journal of Hydrology, 603, 126994.

    Article  Google Scholar 

  • Wheater, H. S. (2006). Flood hazard and management: A UK perspective. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 364(1845), 2135–2145.

    Article  Google Scholar 

  • Wintle, B. A., McCarthy, M. A., Volinsky, C. T., & Kavanagh, R. P. (2003). The use of Bayesian model averaging to better represent uncertainty in ecological models. Conservation Biology, 17(6), 1579–1590.

    Article  Google Scholar 

  • Xu, Z., & Zhao, G. (2016). Impact of urbanization on rainfall-runoff processes: Case study in the Liangshui River Basin in Beijing, China. Proceedings of the International Association of Hydrological Sciences, 373, 7–12.

    Article  Google Scholar 

  • Yimer, F., Messing, I., Ledin, S., & ABdelkadir, A. (2008). Effects of different land use types on infiltration capacity in a catchment in the highlands of Ethiopia. Soil Use and Management, 24(4), 344–349.

    Article  Google Scholar 

  • Yin, H., & Li, C. (2001). Human impact on floods and flood disasters on the Yangtze River. Geomorphology, 41(2–3), 105–109.

    Article  Google Scholar 

  • Zhang, A., Zhang, C., Fu, G., Wang, B., Bao, Z., & Zheng, H. (2012). Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resources Management, 26(8), 2199–2217.

    Article  Google Scholar 

  • Zhang, L., Nan, Z., Yu, W., & Ge, Y. (2015). Modeling land-use and land-cover change and hydrological responses under consistent climate change scenarios in the Heihe River Basin, China. Water Resources Management, 29(13), 4701–4717.

    Article  CAS  Google Scholar 

  • Zheng, J., Wang, H., & Liu, B. (2022). Impact of the long-term precipitation and land use changes on runoff variations in a humid subtropical river basin of China. Journal of Hydrology: Regional Studies, 42, 101136.

    Google Scholar 

  • Zhou, Q., Leng, G., Su, J., & Ren, Y. (2019). Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Science of the Total Environment, 658, 24–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.S.: software, validation, methodology, investigation, resources, data curation, writing—original draft, visualization; M.R.N.: conceptualization, project administration, supervision, methodology, software, conceptualization, methodology, writing—review and editing; N.T.B.: conceptualization, resources, writing—review and editing.

Corresponding author

Correspondence to Mohammad Reza Nikoo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadra, N., Nikoo, M.R. & Talebbeydokhti, N. Non-stationary evaluation of runoff peaks in response to climate variability and land use change in Ferson Creek, Illinois, USA. Environ Monit Assess 195, 661 (2023). https://doi.org/10.1007/s10661-023-11238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11238-1

Keywords

Navigation