Skip to main content

Advertisement

Log in

Model of ecological resilience in Hyrcanian forests that combines the decision-making trial and evaluation method (DEMATEL) and system dynamics

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study assessed the resilience model of Hyrcanian forests with Navroud-Asalem watershed as a case study. The Navroud-Assalem watershed was selected for study because of its special environmental characteristics and access to relatively acceptable information. In order to model resilience, the appropriate indices influencing resilience in Hyrcanian forests were identified and selected. The criteria of biological diversity and forest health and vitality were selected along with the indices of species diversity, forest-type diversity, mixed stands, and the infected area percentage forests with disturbance factors. Thirteen sub-indices and 33 variables were determined and the relationship between the indices and criteria was identified by developing a questionnaire using the decision-making trial and evaluation laboratory (DEMATEL) method. The weights of each index were estimated in Vensim software using the fuzzy analytic hierarchy process. Collecting and analyzing the regional information, the conceptual model was developed and formulated quantitatively and mathematically and was entered into Vensim for resilience modeling of the selected parcels. The DEMATEL method indicated that the species diversity indices and the percentage of affected forests had the greatest influence and interaction with other factors in the system. The parcels studied had different slopes and were affected by the input variables. They were considered as resilient if they were found to maintain current conditions. Avoidance of exploitation, infestation by pests, severe fires in the region, and increased livestock grazing compared to the existing situation were among the prerequisites for resilience in the region. Vensim modeling represents that in control parcel no. 232 the nondimensional resilience parameter is 3025 (the most resilient parcel), while in the disturbed parcel no. 278 this amount is 1775 (the least resilient parcel).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Material and data availability

The authors confirm that the data which support the findings of this study are openly available from the publications of the Iran Forest Institute.

Notes

  1. African Timber Organization Process; Dry Forest in Asia Process; Dry-Zone Africa Process; International Tropical Timber Organization Process; Lepaterique Process of Central America; Montreal Process (Temperate and Boreal Forests); Near East Process; Pan-European Forest Process; Tarapoto Proposal for the Sustainability of the Amazon Forest; Tehran Process Secretariat for Low Forest Cover Countries; Bhopal-India Process.

  2. Program for optimizing the monitoring, preserving, exploiting, and managing the forests in the country during 2013.

References

  • Albrich, K., Rammer, W., Turner, M. G., Ratajczak, Z., Braziunas, K. H., Hansen, W. D., & Seidl, R. (2020). Simulating forest resilience: A review. Global Ecology and Biogeography, 29(12), 2082–2096. https://doi.org/10.1111/geb.13197

    Article  Google Scholar 

  • Amanzadeh, B., Sagheb-Talebi, K., Foumani, B. S., Fadaie, F., Camarero, J. J., & Linares, J. C. (2013). (2013) , Spatial distribution and volume of dead wood in unmanaged Caspian beech (Fagus orientalis) forests from Northern Iran. Forests, 4(4), 751–765. https://doi.org/10.3390/f4040751

    Article  Google Scholar 

  • Arianoutsou, M., Koukoulas, S., & Kazanis, D. (2011). Evaluating post-fire forest resilience using GIS and multi-criteria analysis: An example from Cape Sounion National Park, Greece. Environmental Management, 47, 384–397.

    Article  Google Scholar 

  • Baker, W. L., & Williams, M. A. (2015). Bet-hedging dry-forest resilience to climate-change threats in the western USA based on historical forest structure. Frontiers in Ecology and Evolution, 2, 88. https://doi.org/10.3389/fevo.2014.00088

    Article  Google Scholar 

  • Bazyari, M., Jalilvand, H., Kooch, Y., & Hosseini, S. A. (2015). Ecological effects of forest roads on biodiversity and floristic composition (Case study; leeresar, galanderood, makarood). Journal of Plant Research, 27(1), 1–11. (In Persian).

    Google Scholar 

  • Bischetti, G. B., Chiaradia, E. A., Simonato, T., Speziali, B., Vitali, B., Vullo, P., & Zocco, A. (2005). Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil, 278: 11–22.

  • Brand, F. S., & Jax, K. (2007). Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecology and Society12(1).

  • Brang, P., Courbaud, B., Fischer, A., Kissling-Näf, I., Pettenella, D., Schönenberger, W., & Grimm, V. (2002). Developing indicators for the sustainable management of mountain forests using a modelling approach. Forest Policy and Economics, 4(2), 113–123.

    Article  Google Scholar 

  • Cabell, J. F. & Oelofse, M. (2012). An indicator framework for assessing agroecosystem resilience. Ecology and Society17(1).

  • Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4, 765–781.

    Article  Google Scholar 

  • Carranza, M. L., Frate, L., & Paura, B. (2012). Structure, ecology and plant richness patterns in fragmented beech forests. Plant Ecology & Diversity, 5(4), 541–551.

    Article  Google Scholar 

  • Chandra, S., & Arora, M. K. (2006, December). Forest fire risk zonation mapping using remote sensing technology. In Disaster Forewarning Diagnostic Methods and Management (Vol. 6412, pp. 61–70). SPIE.

  • Criteria and Indicators for Sustainable Management of Forests and Rangelands in the Near East, Near East Forestry and Range Commission, 22nd session, Tlemcen, Algeria, 13-17 Dec. 2015.

  • Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests, The Montreal Process, 5th Edition, Sep. 2015.

  • Cumming, G. S., Barnes, G., Perz, S., Schmink, M., Sieving, K. E., Southworth, J., Binford, M., Holt, R. D., Stickler, C., & Van Holt, T. (2005). An exploratory framework for the empirical measurement of resilience. Ecosystems, 8, 975–987.

    Article  Google Scholar 

  • Deljouei, A., Sadeghi, S. M. M., Abdi, E., Bernhardt-Römermann, M., Pascoe, E. L., & Marcantonio, M. (2018). The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. European Journal of Forest Research, 137(6), 759–770. https://doi.org/10.1007/s10342-018-1138

    Article  Google Scholar 

  • Dong, X. U., Li-min, D. A. I., Guo-fan, S., Lei, T., & Hui, W. (2005). Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin. China. Journal of Forestry Research, 16(3), 169–174.

    Article  Google Scholar 

  • Erten, E., Kurgun, V., & Muusaoglu, N. (2004). Forest fire risk zone mapping from satellite imagery and GIS a case study. European Journal Operational Research, 1–7.

  • Espelta, J. M., Cruz-Alonso, V., Alfaro-Sánchez, R., Hampe, A., Messier, C., & Pino, J. (2020). Functional diversity enhances tree growth and reduces herbivory damage in secondary broadleaf forests, but does not influence resilience to drought. Journal of Applied Ecology, 57(12), 2362–2372.

    Article  Google Scholar 

  • Falk, D. A., Watts, A. C., & Thode, A. E. (2019). Scaling ecological resilience. Frontiers in Ecology and Evolution, 7, 275.

    Article  Google Scholar 

  • Fatolazadeh, T. (2015). Examine the types and severity of erosion in the sub-basins watershed Navrood. Physical Geography Quarterly, 8(27), 24–38.

    Google Scholar 

  • Folke, C. (2016). Resilience (republished). Ecology and Society21(4).

  • Gadow, K. V., Zhang, C. Y., Wehenkel, C., Pommerening, A., Corral-Rivas, J., Korol, M., Myklush, S., Hui, G. Y., Kiviste, A., & Zhao, X. H. (2012). Forest structure and diversity, 29- 83. In: Pukkala, T. and Gadow, K.V. (Eds.). Continuous Cover Forestry. 2nd edition, Managing Forest Ecosystem 23. Springer, Dordrecht, 296p.

  • Ghorbanalizadeh, A., & Akhani, H. (2021). Plant diversity of Hyrcanian relict forests: An annotated checklist chorology and threat categories of endemic and near endemic vascular plant species. Plant Diversity, 44(2022), 39–69.

    Google Scholar 

  • Giglio, L. (2010). MODIS collection 5 active fire product user’s guide version 2.4. Science Systems and Applications, Inc.

  • Gilliam, F. (2014). The herbaceous layer in forests of eastern North America, Oxford University Press.

  • Hamzeh’ee, B., Safavi, S.R., Asri, Y., Jalili, A. (2010). Floristic analysis and a preliminary vegetation description of Arasbaran biosphere reserve. NW Iran, Rostaniha, 11(1), 1–16.

    Google Scholar 

  • Hart, S. J., Henkelman, J., McLoughlin, P. D., Nielsen, S. E., Truchon-Savard, A., & Johnstone, J. F. (2019). Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Global Change Biology, 25(3), 869–884.

    Article  Google Scholar 

  • Hickey, G. M., & Innes, J. L. (2008). Indicators for demonstrating sustainable forest management in British Columbia, Canada: An international review. Ecological Indicators, 8(2), 131–140.

    Article  Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245

    Article  Google Scholar 

  • Ibanez, I., Acharya, K., Juno, E., Karounos, C., Lee, B.R., McCollum, C., Schaffer-Morrison, S., & Tourville, J. (2019). Forest resilience under global environmental change: Do we have the information we need? A systematic review. PLoS One14(9), e0222207

  • Jaiswal, R. K., Mukherjee, S., Raju, K. D., & Saxena, R. (2002). Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 4(1), 1–10.

    Article  Google Scholar 

  • Jalili, A., & Jamzad, Z. (1999). Red data book of Iran, A preliminary survey of endemic, rare and endangered plants species in Iran (p. 750). Research Institute of Forests and Rangelands Press.

    Google Scholar 

  • Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L., & Schoennagel, T. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 14(7), 369–378. https://doi.org/10.1002/fee.1311

    Article  Google Scholar 

  • Jones, L., & Tanner, T. (2017). ‘Subjective resilience’: Using perceptions to quantify household resilience to climate extremes and disasters. Regional Environmental Change, 17, 229–243.

    Article  Google Scholar 

  • Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607–610.

    Article  Google Scholar 

  • Larpkern, P., Moe, S. R., & Totland, Q. (2009). The effects of environmental variables and human disturbance on woody species richness and diversity in a bamboo–deciduous forest in northeastern Thailand. Ecology Research, 24, 147–156.

    Article  Google Scholar 

  • Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hsia, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Chao, W.-C., & Hsieh, C.-F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698–719. https://doi.org/10.1111/avsc.12025

    Article  Google Scholar 

  • Luo, X., He, H. S., Liang, Y., Fraser, J. S., & Li, J. (2018). Mitigating the effects of climate change through harvesting and planting in boreal forests of northeastern china. Sustainability, 10(10), 3531.

    Article  Google Scholar 

  • Mavhura, E., Manyangadze, T., & Aryal, K. R. (2021). A composite inherent resilience index for Zimbabwe: An adaptation of the disaster resilience of place model. International Journal of Disaster Risk Reduction, 57, 102152.

    Article  Google Scholar 

  • McDowell, N. G., Allen, C. D., Anderson-Teixeira, K., Aukema, B. H., Bond- Lamberty, B., Chini, L., Clark, J. S., Dietze, M., Grossiord, C., Hanbury- Brown, A., Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L., Lichstein, J. W., Ogle, K., Poulter, B., Pugh, T. A. M., Seidl, R., … Xu, C. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368, 1–10. https://doi.org/10.1126/science.aaz9463

  • Michalcová, D., Lvončík, S., Chytrý, M., & Hájek, O. (2011). Bias in vegetation databases? A comparison of stratified-random and preferential sampling. Journal of Vegetation Science, 22, 281–291. https://doi.org/10.1111/j.1654-1103.2010.01249.x

    Article  Google Scholar 

  • Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications17(8), 2145–2151. https://doi.org/10.1890/06-1715.1

  • Moradi, Sh., Ramezani, E., Alijanpour, A., & Shafiei, A. (2015). Quantitative and qualitative characteristics of Arasbaran forest protected area in slope gradient classes. Forest Research and Development, 1(1), 1–16.

    CAS  Google Scholar 

  • Moser, S., Meerow, S., Arnott, J., & Jack-Scott, E. (2019). The turbulent world of resilience: Interpretations and themes for transdisciplinary dialog. Climate Change, 153, 21–40.

    Article  Google Scholar 

  • Niering, W. A. (1987). Vegetation dynamics (succession and climax) in relation to plant community management. Conservation Biology, 1(4), 287–295.

    Article  Google Scholar 

  • Nikinmaa, L., Lindner, M., Cantarello, E., Jump, A. S., Seidl, R., Winkel, G., & Muys, B. (2020). Reviewing the use of resilience concepts in forest sciences. Current Forestry Reports, 6, 61–80.

    Article  CAS  Google Scholar 

  • Norris, J. E. (2005). Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England. Plant and Soil, 278(1), 43–53.

    Article  CAS  Google Scholar 

  • Perring, F. (1959). Topographical gradients of chalk grassland. Journal of Ecology, 48, 415–442.

    Article  Google Scholar 

  • Petrokas, R. (2020). Forest climax phenomenon: An invariance of scale. Forests, 11(1), 56.

    Article  Google Scholar 

  • Reitalu, T., Purschke, O., Johansson, L. J., Hall, K., Sykes, M. T., & Prentice, H. C. (2012). Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialization .Journal of Vegetation Science23(1), 41–51 https://doi.org/10.1111/j.1654-1103.2011.01334.x

  • Reyer, C. P., Brouwers, N., Rammig, A., Brook, B. W., Epila, J., Grant, R. F., Holmgren, M., Langerwisch, F., Leuzinger, S., Lucht, W., & Medlyn, B. (2015). Forest resilience and tipping points at different spatio-temporal scales: Approaches and challenges. Journal of Ecology, 103(1), 5–15.

    Article  Google Scholar 

  • Rodriguez-Rojo, M. P., Fernandez- Gonzalez, F., Tichy, L., & Chytry, M. (2014). Vegetation diversity of mesic grasslands (Arrhenatheretalia) in the Iberian Peninsula. Applied Vegetation Science, 17(4), 780–796.

    Article  Google Scholar 

  • Rowland, M. M., Suring, L. H., Wisdom, M. J., Pye, J. M., Rauscher, H. M., Sands, Y., & Beatty, J. S. (2010). Assessment of habitat threats to shrublands in the Great Basin: A case study. Advances in threat assessment and their application to forest and rangeland management. PNW-GTR-802. USDA Forest Service, Pacific Northwest and Southern Research Stations, Portland, Oregon, USA, 673–685.

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.

    Article  Google Scholar 

  • Sang, W. (2009). Plant diversity patterns and their relationships with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24, 303–314. https://doi.org/10.1007/s11284-008-0507-z

    Article  Google Scholar 

  • Scheffer, M. (2009). Critical transitions in nature and society. Princeton University Press.

    Book  Google Scholar 

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596.

    Article  CAS  Google Scholar 

  • Scheffer, M., Carpenter, S., Lenton, T., Bascompte, J., Brock, W., Dakos, V., Koppel, J., Leemput, I., Levin, S., Van Nes, E., Pascual, M., & Vandermeer, J. (2012). Anticipating critical transitions. Science, 338(6105), 344–348. https://doi.org/10.1126/science.1225244

    Article  CAS  Google Scholar 

  • Scholze, M., Knorr, W., Arnell, N. W., & Prentice, I. C. (2006). A climate- change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences USA, 103, 13116–13120. https://doi.org/10.1073/pnas.0601816103

  • Seidl, R., Vigl, F., Rössler, G., Neumann, M., & Rammer, W. (2017). Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. Forest Ecology and Management, 388, 3–12.

    Article  Google Scholar 

  • Senf, C., Müller, J., & Seidl, R. (2019). Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landscape Ecology, 34(12), 2837–2850.

    Article  Google Scholar 

  • Stokes, A. (2006). Selecting tree species for use in rockfall-protection forests. Forest Snow and Landscape Research, 80(1), 77–86.

    Google Scholar 

  • Suding, K., Spotswood, E., Chapple, D., Beller, E., & Gross, K. (2016). Ecological dynamics and ecological restoration. Foundations of Restoration Ecology, 27–56.

  • Tavankar, F., Bonyad, A. E., & Majnounian, B. (2011). Investigation of damages to stand caused by selection cutting using skidding system in the Asalem-Nav forest, Iran.

  • Tohidifar, M., Moser, M., Zehzad, B., & Ghadirian, T. (2016). Biodiversity of the hyrcanian forests. A Synthesis Report. DO, I, 10.

    Google Scholar 

  • Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 349, 814–818. https://doi.org/10.1126/science.aac6759

    Article  CAS  Google Scholar 

  • Vadrevu, K. P., Eaturu, A., & Badarinath, A. V. S. (2009). Fire risk evaluation using multicriteria analysis-a case study. Journal of Environmental Monitoring Assessment, 166, 223–239.

    Article  Google Scholar 

  • Vakili, M., Shakeri, Z., Motahari, S., Farahani, M., Robbins, Z. J., & Scheller, R. M. (2021). Resistance and resilience of Hyrcanian mixed forests under natural and anthropogenic disturbances. Frontiers in Forests and Global Change, 4, 640451.

    Article  Google Scholar 

  • Vergani, C., Chiaradia, E. A., & Bischetti, G. B. (2012). Variability in the tensile resistance of roots in Alpine forest tree species. Ecological Engineering, 46, 43–56. https://doi.org/10.1016/j.ecoleng.2012.04.036

    Article  Google Scholar 

  • Villa, P. M., Martins, S. V., de Oliveira Neto, S. N., Rodrigues, A. C., Martorano, L. G., Monsanto, L. D., ... Gastauer, M. (2018). Intensification of shifting cultivation reduces forest resilience in the northern Amazon. Forest Ecology and Management, 430, 312–320.

  • Watson, A. J., & Mardern, M. (2004). Live root-wood tensile strengths of some common New Zealand indigenous and plantation tree species. New Zealand Journal of Forestry Science, 34(3), 344.

    Google Scholar 

  • Yan, H., Zhan, J., & Zhang, T. (2011). Resilience of forest ecosystems and its influencing factors. Procedia Environmental Sciences, 10, 2201–2206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mahdyeh Hajbabaie drafted the article and made a substantial contribution to the concept and framework of the research, Seyed Ali Jozi (corresponding author) revised the article and made a substantial contribution to the concept and framework of the research, Forough Farsad and Hadi Kiadaliri revised the article and Alireza Gharagozlou approved the version.

Corresponding author

Correspondence to Seyed Ali Jozi.

Ethics declarations

Ethics approval

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajbabaie, M., Jozi, S.A., Farsad, F. et al. Model of ecological resilience in Hyrcanian forests that combines the decision-making trial and evaluation method (DEMATEL) and system dynamics. Environ Monit Assess 195, 448 (2023). https://doi.org/10.1007/s10661-023-11054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11054-7

Keywords

Navigation