Skip to main content

Advertisement

Log in

Spatiotemporal evaluation of drought characteristics based on standard drought indices at various timescales over Uttar Pradesh, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Prolonged and repeated drought, as seen in India and other parts of South Asia, is a symptom of climate change, which is partially the result of human interventions. The performance of the widely used drought metrics Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) are evaluated for 18 stations in Uttar Pradesh state for the period 1971 to 2018 in this study. Drought characteristics such as intensity, duration, and frequency of different categories are estimated and compared based on SPI and SPEI. In addition, station proportion is estimated at a different timescales, providing a better insight into temporal variability drought of a specific category. Spatiotemporal trend variability of SPEI and SPI was investigated at a significance level of 0.05 using the non-parametric Mann–Kendall (MK) test. SPEI adds the effect of temperature rise and deficit change on the drought occurrences of different classes. SPEI provides a better estimation of drought characteristics due to its consideration of temperature change in the drought severity. The more significant number of drying events accounted for a timescale of 3 months and 6 months, reflecting the higher variability of the seasonal fluctuation of water balance over the state. At 9-month and 12-month timescales, SPI and SPEI fluctuate gradually with considerable differences between the duration and severity of the drought event. This study reveals that there have been a substantial number of drought events over the state during the last two decades (2000 to 2018). The results conclude that the study area is at risk of erratic meteorological drought conditions where the western part of the study is worst affected compared to the eastern part of Uttar Pradesh (India).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abramowitz, M., & Stegun, I. A. (1965). Handbook of Mathematical Functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series e, 55, 953.

  • Afzal, M., & Ragab, R. (2020). How do climate and land use changes affect the water cycle? Modelling study including future drought events prediction using reliable drought indices. Irrigation and Drainage, 69(4), 806–825. https://doi.org/10.1002/ird.2467

    Article  Google Scholar 

  • Alsafadi, K., Mohammed, S. A., Ayugi, B., Sharaf, M., & Harsányi, E. (2020). Spatial–temporal evolution of drought characteristics over Hungary between 1961 and 2010. Pure and Applied Geophysics, 177(8), 3961–3978. https://doi.org/10.1007/s00024-020-02449-5

    Article  Google Scholar 

  • Amrit, K., Pandey, R. P., & Mishra, S. K. (2021). Meteorological Drought Characteristics in Eastern Region of India. Springer International Publishing. https://doi.org/10.1007/978-3-030-59148-9_7

    Article  Google Scholar 

  • Angelidis, P., Maris, F., Kotsovinos, N., & Hrissanthou, V. (2012). Computation of drought index SPI with alternative distribution functions. Water Resources Management, 26(9), 2453–2473.

  • Bhatt, D., Sonkar, G., & Mall, R. K. (2019). Impact of Climate Variability on the Rice Yield in Uttar Pradesh: An Agro-Climatic Zone Based Study. Environmental Processes, 6(1), 135–153. https://doi.org/10.1007/s40710-019-00360-3

    Article  Google Scholar 

  • Byakatonda, J., Parida, B. P., Moalafhi, D. B., & Kenabatho, P. K. (2018). Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmospheric Research, 213(March), 492–508. https://doi.org/10.1016/j.atmosres.2018.07.002

    Article  Google Scholar 

  • Cook, B. I., Shukla, S. P., Puma, M. J., & Nazarenko, L. S. (2015). Irrigation as an historical climate forcing. Climate Dynamics, 44(5), 1715–1730. https://doi.org/10.1007/s00382-014-2204-7

    Article  Google Scholar 

  • Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Danandeh Mehr, A., & Vaheddoost, B. (2020). Identification of the trends associated with the SPI and SPEI indices across Ankara. Turkey. Theoretical and Applied Climatology, 139(3–4), 1531–1542. https://doi.org/10.1007/s00704-019-03071-9

    Article  Google Scholar 

  • Ding, Y., Hayes, M. J., & Widhalm, M. (2011). Measuring economic impacts of drought: A review and discussion. Disaster Prevention and Management, 20(4), 434–446. https://doi.org/10.1108/09653561111161752

    Article  Google Scholar 

  • Dogan, S., Berktay, A., & Singh, V. P. (2012). Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey. Journal of Hydrology, 470471, 255–268. https://doi.org/10.1016/j.jhydrol.2012.09.003

  • Ficklin, D. L., Maxwell, J. T., Letsinger, S. L., & Gholizadeh, H. (2015). A climatic deconstruction of recent drought trends in the United States. Environmental Research Letters, 10(4). https://doi.org/10.1088/1748-9326/10/4/044009

  • Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D., & Schär, C. (2007). Soil moisture–atmosphere interactions during the 2003 European Summer Heat Wave. Journal of Climate, 20(20), 5081–5099. https://doi.org/10.1175/JCLI4288.1

    Article  Google Scholar 

  • Gao, X., Zhao, Q., & Zhao, X. (2017). Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 595, 191–200.

    Article  CAS  Google Scholar 

  • Gautam, R. C., & Bana, R. S. (2014). Drought in India: Its impact and mitigation strategies - A review. Indian Journal of Agronomy, 59(2), 179–190.

    Google Scholar 

  • Ghosh, K. G. (2019). Spatial and temporal appraisal of drought jeopardy over the Gangetic West Bengal, eastern India. Geoenvironmental Disasters, 6(1), 1–21.

  • Gond, S., Gupta, N., & Gupta, S. (2019). Evaluation of drought severity indices and their trend for Mirzapur (Uttar Pradesh). December 2019. 24th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2019 International).

  • Gupta, N., Gond, S., & Gupta, S. K. (2022). Spatiotemporal trend characteristics of rainfall and drought jeopardy over Bundelkhand Region. India. Arabian Journal of Geosciences, 15(12), 1155. https://doi.org/10.1007/s12517-022-10389-8

    Article  Google Scholar 

  • Gupta, S. K., Gupta, N., & Singh, V. P. (2021). Variable-sized cluster analysis for 3D pattern characterization of trends in precipitation and change-point detection. Journal of Hydrologic Engineering, 26(1), 04020056. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002010

    Article  Google Scholar 

  • IPCC. (2007). Climate change 2007: Climate change impacts, adaptation and vulnerability. Working Group II contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Summary for policymakers, 23.

  • IPCC. (2019). Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

  • Jamro, S., & Channa, F. N. (2020). Exploring the Evolution of Drought Characteristics in Balochistan, How does access to this work benefit you ? Let us know ! applied sciences Exploring the Evolution of Drought Characteristics in Balochistan, Pakistan.

  • Kendall, M. G. (1975). Rank Correlation Methods. Charles Griffin.

    Google Scholar 

  • Łabȩdzki, L. (2007). Estimation of local drought frequency in central Poland using the standardized precipitation index SPI. Irrigation and Drainage, 56(1), 67–77. https://doi.org/10.1002/ird.285

    Article  Google Scholar 

  • Labudová, L., Labuda, M., & Takáč, J. (2017). Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland. Theoretical and Applied Climatology, 128(1–2), 491–506. https://doi.org/10.1007/s00704-016-1870-2

    Article  Google Scholar 

  • Li, X., Zhang, H., Yu, J., Gong, Y., Guan, X., & Li, S. (2021). Spatial–temporal analysis of urban ecological comfort index derived from remote sensing data: A case study of Hefei, China. Journal of Applied Remote Sensing, 15(04). https://doi.org/10.1117/1.jrs.15.042403

  • Liu, C., Yang, C., Yang, Q., & Wang, J. (2021). Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province. China. Scientific Reports, 11(1), 1–15. https://doi.org/10.1038/s41598-020-80527-3

    Article  CAS  Google Scholar 

  • Mallya, G., Mishra, V., Niyogi, D., Tripathi, S., & Govindaraju, R. S. (2015). Trends and variability of droughts over the Indian monsoon region. Weather and Climate Extremes, 12, 43–68. https://doi.org/10.1016/j.wace.2016.01.002

    Article  Google Scholar 

  • Mann, H. B. (1945). Non-parametric tests against trend, Econometrica: Journal of the Econometric Society, 13(3), 245–259.

  • Masroor, M., Rehman, S., Avtar, R., Sahana, M., Ahmed, R., & Sajjad, H. (2020). Exploring climate variability and its impact on drought occurrence: Evidence from Godavari Middle sub-basin, India. Weather and Climate Extremes, 30(August), 100277. https://doi.org/10.1016/j.wace.2020.100277

  • Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In: Proceedings of the Ninth Conference on Applied Climatology. American Metereological Society, January, 179–184.

  • Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F., & Miglietta, M. M. (2020). Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). Meteorological Applications, 27(1), 1–20. https://doi.org/10.1002/met.1856

    Article  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Mishra, V., Aadhar, S., Asoka, A., Pai, S., & Kumar, R. (2016). On the frequency of the 2015 monsoon season drought in the Indo-Gangetic Plain. Geophysical Research Letters, 43(23), 12102–12112. https://doi.org/10.1002/2016GL071407

    Article  Google Scholar 

  • Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17

    Article  CAS  Google Scholar 

  • Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1–4), 69–88. https://doi.org/10.1016/j.agrformet.2005.07.012

    Article  Google Scholar 

  • Nath, R., Nath, D., Li, Q., Chen, W., & Cui, X. (2017). Impact of drought on agriculture in the Indo-Gangetic Plain. India. Advances in Atmospheric Sciences, 34(3), 335–346. https://doi.org/10.1007/s00376-016-6102-2

    Article  Google Scholar 

  • Ogunrinde, A. T., Olasehinde, D. A., & Olotu, Y. (2020). Assessing the sensitivity of standardized precipitation evapotranspiration index to three potential evapotranspiration models in Nigeria. Scientific African, 8, e00431. https://doi.org/10.1016/j.sciaf.2020.e00431

  • Ojha, R., Nagesh Kumar, D., Sharma, A., & Mehrotra, R. (2013). Assessing severe drought and wet events over India in a future climate using a nested bias-correction approach. Journal of Hydrologic Engineering, 18(7), 760–772. https://doi.org/10.1061/(asce)he.1943-5584.0000585

    Article  Google Scholar 

  • Omar, P. J., Bihari, D. S., & Kumar, D. P. (2019). Temporal variability study in rainfall and temperature over Varanasi and adjoining areas. Disaster Advances, 12(1), 1–7.

    CAS  Google Scholar 

  • Pai, D. S., Guhathakurta, P., Kulkarni, A., & Rajeevan, M. N. (2017). Variability of meteorological droughts over India BT - Observed climate variability and change over the Indian region (M. N. Rajeevan & S. Nayak (Eds.); pp. 73–87). Springer Singapore. https://doi.org/10.1007/978-981-10-2531-0_5

  • Palmer, W. C. (1965). Meteorological drought. In U.S. Weather Bureau, Res. Pap. No. 45 (p. 58). https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf

  • Pandey, V., Srivastava, P. K., Singh, S. K., Petropoulos, G. P., & Mall, R. K. (2021). Drought identification and trend analysis using long-term chirps satellite precipitation product in Bundelkhand. India. Sustainability (switzerland), 13(3), 1–20. https://doi.org/10.3390/su13031042

    Article  Google Scholar 

  • Paul, S., Ghosh, S., Oglesby, R., Pathak, A., Chandrasekharan, A., & Ramsankaran, R. (2016). Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Scientific Reports, 6(1), 32177. https://doi.org/10.1038/srep32177

    Article  CAS  Google Scholar 

  • Pei, Z., Fang, S., Wang, L., & Yang, W. (2020). Comparative analysis of drought indicated by the SPI and SPEI at various timescales in inner Mongolia, China. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071925

  • Peters, E., Bier, G., van Lanen, H. A. J., & Torfs, P. J. J. F. (2006). Propagation and spatial distribution of drought in a groundwater catchment. Journal of Hydrology, 321(1), 257–275. https://doi.org/10.1016/j.jhydrol.2005.08.004

  • Polong, F., Chen, H., Sun, S., & Ongoma, V. (2019). Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River Basin. Kenya. Theoretical and Applied Climatology, 138(1–2), 777–792. https://doi.org/10.1007/s00704-019-02858-0

    Article  Google Scholar 

  • Potopová, V., Štěpánek, P., Možný, M., Türkott, L., & Soukup, J. (2015). Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agricultural and Forest Meteorology, 202, 26–38. https://doi.org/10.1016/j.agrformet.2014.11.022

  • Rajsekhar, D., Mishra, A. K., & Singh, V. P. (2013). Regionalization of drought characteristics using an entropy approach. Journal of Hydrologic Engineering, 18(7), 870–887. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000683

    Article  Google Scholar 

  • Sah, S., Singh, R., Chaturvedi, G., & Das, B. (2021). Trends, variability, and teleconnections of long-term rainfall in the Terai region of India. Theoretical and Applied Climatology, 143(1–2), 291–307. https://doi.org/10.1007/s00704-020-03421-y

    Article  Google Scholar 

  • Sahana, V., & Mondal, A. (2022). Evolution of multivariate drought hazard, vulnerability and risk in India under climate change. Natural Hazards and Earth System Sciences Discussions, February, 1–19.

  • Saharwardi, M. S., Mahadeo, A. S., & Kumar, P. (2021). Understanding drought dynamics and variability over Bundelkhand region. Journal of Earth System Science, 130(3), 122. https://doi.org/10.1007/s12040-021-01616-z

    Article  Google Scholar 

  • Samantaray, A. K., Ramadas, M., & Panda, R. K. (2021). Assessment of impacts of potential climate change on meteorological drought characteristics at regional scales. International Journal of Climatology, 41(S1), E319–E341. https://doi.org/10.1002/joc.6687

    Article  Google Scholar 

  • Shah, R., & Mishra, V. (2014). Evaluation of the reanalysis products for the monsoon season droughts in India. Journal of Hydrometeorology, 15(4), 1575–1591. https://doi.org/10.1175/JHM-D-13-0103.1

    Article  Google Scholar 

  • Spinoni, J., Antofie, T., Barbosa, P., Bihari, Z., Lakatos, M., Szalai, S., Szentimrey, T., & Vogt, J. (2013). An overview of drought events in the Carpathian Region in 1961–2010. Advances in Science and Research, 10(1), 21–32. https://doi.org/10.5194/asr-10-21-2013

    Article  Google Scholar 

  • Stagge, J. H., Kohn, I., Tallaksen, L. M., & Stahl, K. (2015). Modeling drought impact occurrence based on meteorological drought indices in Europe. Journal of Hydrology, 530(October), 37–50. https://doi.org/10.1016/j.jhydrol.2015.09.039

    Article  Google Scholar 

  • Tallaksen, L. M., Hisdal, H., & Van Lanen, H. A. J. (2009). Space–time modelling of catchment scale drought characteristics. Journal of Hydrology, 375(3), 363–372. https://doi.org/10.1016/j.jhydrol.2009.06.032

  • Tan, C., Yang, J., & Li, M. (2015). Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui Autonomous Region. China. Atmosphere, 6(10), 1399–1421. https://doi.org/10.3390/atmos6101399

    Article  Google Scholar 

  • Thomas, T., Jaiswal, R. K., Galkate, R., Nayak, P. C., & Ghosh, N. C. (2016a). Drought indicators-based integrated assessment of drought vulnerability: A case study of Bundelkhand droughts in central India. Natural Hazards, 81(3), 1627–1652. https://doi.org/10.1007/s11069-016-2149-8

    Article  Google Scholar 

  • Thomas, T., Jaiswal, R. K., Galkate, R. V., & Nayak, T. R. (2016b). Reconnaissance drought index based evaluation of meteorological drought characteristics in Bundelkhand. Procedia Technology, 24, 23–30. https://doi.org/10.1016/j.protcy.2016.05.005

    Article  Google Scholar 

  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55. https://doi.org/10.2307/210739

    Article  Google Scholar 

  • Tian, L., & Quiring, S. M. (2019). Spatial and temporal patterns of drought in Oklahoma (1901–2014). International Journal of Climatology, 39(7), 3365–3378. https://doi.org/10.1002/joc.6026

    Article  Google Scholar 

  • Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359–392. https://doi.org/10.1002/wat2.1085

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., & Sanchez-Lorenzo, A. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10). https://doi.org/10.1175/2012EI000434.1

  • Vicente-Serrano, S. M., Van der Schrier, G., Beguería, S., Azorin-Molina, C., & Lopez-Moreno, J. I. (2015). Contribution of precipitation and reference evapotranspiration to drought indices under different climates. Journal of Hydrology, 526, 42–54. https://doi.org/10.1016/j.jhydrol.2014.11.025

    Article  Google Scholar 

  • Wang, H., Pan, Y., & Chen, Y. (2017). Comparison of three drought indices and their evolutionary characteristics in the arid region of northwestern China. Atmospheric Science Letters, 18(3), 132–139. https://doi.org/10.1002/asl.735

    Article  Google Scholar 

  • Wang, Q., Wu, J., Lei, T., He, B., Wu, Z., Liu, M., Mo, X., Geng, G., Li, X., Zhou, H., & Liu, D. (2014). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International, 349, 10–21. https://doi.org/10.1016/j.quaint.2014.06.021

  • Wang, W., Guo, B., Zhang, Y., Zhang, L., Ji, M., Xu, Y., Zhang, X., & Zhang, Y. (2021). The sensitivity of the SPEI to potential evapotranspiration and precipitation at multiple timescales on the Huang-Huai-Hai Plain. China. Theoretical and Applied Climatology, 143(1–2), 87–99. https://doi.org/10.1007/s00704-020-03394-y

    Article  Google Scholar 

  • Wells, N., Goddard, S., & Hayes, M. J. (2004). A self-calibrating Palmer Drought Severity Index. Journal of Climate, 17(12), 2335–2351. https://doi.org/10.1175/1520-0442(2004)017%3c2335:ASPDSI%3e2.0.CO;2

    Article  Google Scholar 

  • Wilhite, D. A. (2016). Managing drought risk in a changing climate. Climate Research, 70(2–3), 99–102. https://doi.org/10.3354/cr01430

    Article  Google Scholar 

  • Yan-jun, L. I., Xiao-dong, Z., Fan, L. U., & Jing, M. A. (2012). Analysis of drought evolvement characteristics based on standardized precipitation index in the Huaihe River Basin. Procedia Engineering, 28, 434–437. https://doi.org/10.1016/j.proeng.2012.01.746

  • Yanqing, J., Bo, Z., & Bin, M. (2018). Daily SPEI reveals long-term change in drought characteristics in Southwest China. Chinese Geographical Science, 28(4), 680–693.

    Article  Google Scholar 

  • Yevjevich, V. (1969). An objective approach to definitions and investigations of continental hydrologic droughts. Journal of Hydrology, 7(3), 353. https://doi.org/10.1016/0022-1694(69)90110-3

    Article  Google Scholar 

  • Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Reviews, 19(1), 333–349. https://doi.org/10.1139/a11-013

    Article  Google Scholar 

  • Zhang, Q., Xiao, M., Singh, V. P., & Li, J. (2012). Regionalization and spatial changing properties of droughts across the Pearl River basin, China. Journal of Hydrology, 472473, 355–366. https://doi.org/10.1016/j.jhydrol.2012.09.054

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Gond.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gond, S., Gupta, N., Patel, J. et al. Spatiotemporal evaluation of drought characteristics based on standard drought indices at various timescales over Uttar Pradesh, India. Environ Monit Assess 195, 439 (2023). https://doi.org/10.1007/s10661-023-10988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10988-2

Keywords

Navigation