Skip to main content
Log in

Sensitivity of WRF/Chem simulated PM2.5 to initial/boundary conditions and planetary boundary layer parameterization schemes over the Indo-Gangetic Plain

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The ability of a chemical transport model to simulate accurate meteorological and chemical processes depends upon the physical parametrizations and quality of meteorological input data such as initial/boundary conditions. In this study, weather research and forecasting model coupled with chemistry (WRF-Chem) is used to test the sensitivity of PM2.5 predictions to planetary boundary layer (PBL) parameterization schemes (YSU, MYJ, MYNN, ACM2, and Boulac) and meteorological initial/boundary conditions (FNL, ERA-Interim, GDAS, and NCMRWF) over Indo-Gangetic Plain (Delhi, Punjab, Haryana, Uttar Pradesh, and Rajasthan) during the winter period (December 2017 to January 2018). The aim is to select the model configuration for simulating PM2.5 which shows the lowest errors and best agreement with the observed data. The best results were achieved with initial/boundary conditions from ERA and GDAS datasets and local PBL parameterization (MYJ and MYNN). It was also found that PM2.5 concentrations are relatively less sensitive to changes in initial/boundary conditions but in contrast show a stronger sensitivity to changes in the PBL scheme. Moreover, the sensitivity of the simulated PM2.5 to the choice of PBL scheme is more during the polluted hours of the day (evening to early morning), while that to the choice of the meteorological input data is more uniform and subdued over the day. This work indicates the optimal model setup in terms of choice of initial/boundary conditions datasets and PBL parameterization schemes for future air quality simulations. It also highlights the importance of the choice of PBL scheme over the choice of meteorological data set to the simulated PM2.5 by a chemical transport model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available upon request from Dr. Sachin D. Ghude (sachinghude@tropmet.res.in).

References

  • Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kållberg, P., Kobayashi, S., & Uppala, S. (2009). ERA report series-the ERA-Interim archive Version 1.0. Weather, 16.

  • Bougeault, P., & Lacarrere, P. (1989). Parameterization of orography-induced turbulence in a mesobeta–scale model. Monthly Weather Review, 117(8), 1872–1890. https://doi.org/10.1175/1520-0493(1989)117%3C1872:POOITI%3E2.0.CO;2

    Article  Google Scholar 

  • Carvalho, D., Rocha, A., Gómez-Gesteira, M., & Santos, C. S. (2014). WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Applied Energy, 117, 116–126. https://doi.org/10.1016/j.apenergy.2013.12.001

    Article  Google Scholar 

  • Chaouch, N., Temimi, M., Weston, M., & Ghedira, H. (2017). Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmospheric Research, 187, 106–127. https://doi.org/10.1016/j.atmosres.2016.12.009

    Article  Google Scholar 

  • Cohen, A. E., Cavallo, S. M., Coniglio, M. C., & Brooks, H. E. (2015). A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern US cold season severe weather environments. Weather and Forecasting, 30(3), 591–612. https://doi.org/10.1175/WAF-D-14-00105.1

    Article  Google Scholar 

  • Das, S., Dey, S., & Dash, S. K. (2015). Impacts of aerosols on dynamics of Indian summer monsoon using a regional climate model. Climate Dynamics, 44(5), 1685–1697. https://doi.org/10.1007/s00382-014-2284-4

    Article  Google Scholar 

  • Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne particulate matter and human health: A review. Aerosol Science and Technology, 39(8), 737–749. https://doi.org/10.1080/02786820500191348

    Article  CAS  Google Scholar 

  • Debnath, S., Jena, C., Ghude, S. D., Kumar, R., Govardhan, G., Gunwani, P., & Pokhrel, S. (2021). Simulation of Indian summer monsoon rainfall (ISMR) with fully coupled regional chemistry transport model: A case study for 2017. Atmospheric Environment, 268, 118785. https://doi.org/10.1016/j.atmosenv.2021.118785

    Article  CAS  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., … & Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dumka, U. C., Tiwari, S., Kaskaoutis, D. G., Hopke, P. K., Singh, J., Srivastava, A. K., Bisht, D. S., Attri, S. D., Tyagi, S., Misra, A., & Pasha, G. S. (2017). Assessment of PM 2.5 chemical compositions in Delhi: Primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. Journal of Atmospheric Chemistry, 74(4), 423–450. https://doi.org/10.1007/s10874-016-9350-8

    Article  CAS  Google Scholar 

  • Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J. F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., & Kloster, S. (2010). Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geoscientific Model Development, 3(1), 43–67. https://doi.org/10.5194/gmd-3-43-2010

    Article  Google Scholar 

  • George, J. P., Indira Rani, S., Jayakumar, A., Mohandas, S., Mallick, S., Lodh, A., Rakhi, R. M., Sreevathsa, N. R., & Rajagopal, E. N. (2016). NCUM data assimilation system. NMRF/TR/01/2016.

  • Ghude, S. D., Chate, D. M., Jena, C., Beig, G., Kumar, R., Barth, M. C., Pfister, G. G., Fadnavis, S., & Pithani, P. (2016). Premature mortality in India due to PM2.5 and ozone exposure. Geophysical Research Letters, 43(9), 4650–4658. https://doi.org/10.1002/2016GL068949

    Article  CAS  Google Scholar 

  • Ghude, S. D., Kumar, R., Govardhan, G., Jena, C., Nanjundiah, R. S., & Rajeevan, M. (2022). New Delhi: Air-quality warning system cuts peak pollution. Nature, 602(7896), 211–211. https://doi.org/10.1038/d41586-022-00332-y

    Article  CAS  Google Scholar 

  • Ghude, S. D., Kumar, R., Jena, C., Debnath, S., Kulkarni, R. G., Alessandrini, S., Biswas, M., Kulkrani, S., Pithani, P., Kelkar, S., & Sajjan, V. (2020). Evaluation of PM2.5 forecast using chemical data assimilation in the WRF-Chem model: A novel initiative under the Ministry of Earth Sciences Air Quality Early Warning System for Delhi India. Current Science, 118, 1803–1815. https://doi.org/10.18520/cs/v118/i11/1803-1815

  • Giannakopoulou, E. M., & Nhili, R. (2014). WRF model methodology for offshore wind energy applications. Advances in Meteorology. https://doi.org/10.1155/2014/319819

    Article  Google Scholar 

  • Grell, G. A., & Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14(10), 5233–5250.

    Article  CAS  Google Scholar 

  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., & Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmospheric Chemistry and Physics, 6(11), 3181–3210. https://doi.org/10.5194/acp-6-3181-2006

    Article  CAS  Google Scholar 

  • Gunwani, P., & Mohan, M. (2017). Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmospheric Research, 194, 43–65. https://doi.org/10.1016/j.atmosres.2017.04.026

    Article  Google Scholar 

  • Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9), 2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  • Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), 927–945. https://doi.org/10.1175/1520-0493(1994)122%3c0927:TSMECM%3e2.0.CO;2

    Article  Google Scholar 

  • Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., & Denier van der Gon, H. (2015). HTAP_v2. 2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 15(19), 11411–11432. https://doi.org/10.5194/acp-15-11411-2015

    Article  CAS  Google Scholar 

  • Jena, C., Ghude, S. D., Kumar, R., Debnath, S., Govardhan, G., Soni, V. K., Kulkarni, S. H., Beig, G., Nanjundiah, R. S., & Rajeevan, M. (2021). Performance of high resolution (400 m) PM 2.5 forecast over Delhi. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-83467-8

    Article  CAS  Google Scholar 

  • Joshi, P., Ghosh, S., Dey, S., Dixit, K., Choudhary, R. K., Salve, H. R., & Balakrishnan, K. (2021). Impact of acute exposure to ambient PM2.5 on non-trauma all-cause mortality in the megacity Delhi. Atmospheric Environment, 259, 118548. https://doi.org/10.1016/j.atmosenv.2021.118548

    Article  CAS  Google Scholar 

  • Kumar, R., Ghude, S. D., Biswas, M., Jena, C., Alessandrini, S., Debnath, S., Kulkarni, S., Sperati, S., Soni, V. K., Nanjundiah, R. S., & Rajeevan, M. (2020). Enhancing accuracy of air quality and temperature forecasts during paddy crop residue burning season in Delhi via chemical data assimilation. Journal of Geophysical Research: Atmospheres, 125(17), e2020JD033019. https://doi.org/10.1029/2020JD033019

    Article  CAS  Google Scholar 

  • Lee, P., & Ngan, F. (2011). Coupling of important physical processes in the planetary boundary layer between meteorological and chemistry models for regional to continental scale air quality forecasting: An overview. Atmosphere, 2(3), 464–483. https://doi.org/10.3390/atmos2030464

    Article  CAS  Google Scholar 

  • Mohan, M., & Gupta, M. (2018). Sensitivity of PBL parameterizations on PM10 and ozone simulation using chemical transport model WRF-Chem over a sub-tropical urban airshed in India. Atmospheric Environment, 185, 53–63. https://doi.org/10.1016/j.atmosenv.2018.04.054

    Article  CAS  Google Scholar 

  • Morrison, H., Thompson, G., & Tatarskii, V. (2009). Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Monthly Weather Review, 137(3), 991–1007. https://doi.org/10.1175/2008MWR2556.1

    Article  Google Scholar 

  • Mukhopadhyay, P., Prasad, V. S., Krishna, R. P. M., Deshpande, M., Ganai, M., Tirkey, S., Sarkar, S., Goswami, T., Johny, C. J., Roy, K., & Mahakur, M. (2019). Performance of a very high-resolution global forecast system model (GFS T1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons. Journal of Earth System Science, 128(6), 1–18. https://doi.org/10.1007/s12040-019-1186-6

    Article  CAS  Google Scholar 

  • Nakanishi, M., & Niino, H. (2004). An improved Mellor-Yamada Level-3 model with condensation physics: Its design and verification. Boundary-Layer Meteorology, 112, 1–31. https://doi.org/10.1023/B:BOUN.0000020164.04146.98

    Article  Google Scholar 

  • Pithani, P., Ghude, S. D., Prabhakaran, T., Karipot, A., Hazra, A., Kulkarni, R., Chowdhuri, S., Resmi, E. A., Konwar, M., Murugavel, P., & Safai, P. D. (2019). WRF model sensitivity to choice of PBL and microphysics parameterization for an advection fog event at Barkachha, rural site in the Indo-Gangetic basin, India. Theoretical and Applied Climatology, 136(3), 1099–1113. https://doi.org/10.1007/s00704-018-2530-5

    Article  Google Scholar 

  • Pleim, J. E. (2007). A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. Journal of Applied Meteorology and Climatology, 46, 1396–1409. https://doi.org/10.1175/JAM2534.1

    Article  Google Scholar 

  • Sengupta, A., Govardhan, G., Debnath, S., Yadav, P., Kulkarni, S. H., Parde, A. N., Lonkar, P., Dhangar, N., Gunwani, P., Wagh, S., & Nivdange, S. (2022). Probing into the wintertime meteorology and particulate matter (PM2.5 and PM10) forecast over Delhi. Atmospheric Pollution Research, 13(6), 101426. https://doi.org/10.1016/j.apr.2022.101426

    Article  CAS  Google Scholar 

  • Shi, L., Zhu, A., Huang, L., Yaluk, E., Gu, Y., Wang, Y., Wang, S., Chan, A., & Li, L. (2021). Impact of the planetary boundary layer on air quality simulations over the Yangtze River Delta region, China. Atmospheric Environment, 263, 118685. https://doi.org/10.1016/j.atmosenv.2021.118685

    Article  CAS  Google Scholar 

  • Simmons, A., Uppala, S., Dee, D., & Kobayashi, S. (2007). ERA Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, 110, 25–35.

    Google Scholar 

  • Singh, A., & Dey, S. (2012). Influence of aerosol composition on visibility in megacity Delhi. Atmospheric Environment, 62, 367–373. https://doi.org/10.1016/j.atmosenv.2012.08.048

    Article  CAS  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhi, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. Techical Report, 113.

  • Stensrud, D. J. (2007). Parameterization schemes: Keys to understanding numerical weather prediction models. Cambridge University Press.

  • Stull, R. B. (1988). An introduction to boundary layer meteorology (Vol. 13). Springer Science & Business Media.

  • Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., & Cuenca, R. H. (2004). Implementation and verification of the unified NOAH land surface model in the WRF model. In 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction (Vol. 1115, No. 6, pp. 2165–2170).

  • Wałaszek, K., Kryza, M., & Werner, M. (2014). Evaluation of the WRF meteorological model results during a high ozone episode in SW Poland – The role of model initial conditions. International Journal of Environment and Pollution, 54, 193–202. https://doi.org/10.1504/IJEP.2014.065120

    Article  Google Scholar 

  • Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., & Soja, A. J. (2011). The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625–641. https://doi.org/10.5194/gmd-4-625-2011

    Article  Google Scholar 

  • Zaveri, R. A., Easter, R. C., Fast, J. D., & Peters, L. K. (2008). Model for simulating aerosol interactions and chemistry (MOSAIC). Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2007JD008782

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Executive Director and the Director General of C-DAC. We would like to acknowledge the Director, IITM, for the support and for providing the necessary facilities to carry out the research work. We would like to thank the high-performance computing support from Aditya and Pratyush provided by the Indian Institute of Tropical Meteorology, Pune. We would like to thank CPCB, Winter Fog Experiment (WiFEX) campaign, for providing surface PM2.5 data; GFS, NCMRWF, and ECMWF for providing reanalysis dataset.

Funding

This work was supported by the National Supercomputing Mission (NSM) program grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Preeti Gunwani or Gaurav Govardhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunwani, P., Govardhan, G., Jena, C. et al. Sensitivity of WRF/Chem simulated PM2.5 to initial/boundary conditions and planetary boundary layer parameterization schemes over the Indo-Gangetic Plain. Environ Monit Assess 195, 560 (2023). https://doi.org/10.1007/s10661-023-10987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-10987-3

Keywords

Navigation