Skip to main content

Advertisement

Log in

Evaluation of soil-vegetation interaction effects on water fluxes revealed by the proxy of model parameter combinations

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The coupled development of soil and vegetation leads to a close interaction between their attributes and impacts the sustainability of eco-hydrology at different scales. In this study, a distributed hydrological model of a watershed was created with the Soil and Water Assessment Tool (SWAT) in a representative tributary watershed for investigating such effects. The results quantify the intensity and interval of the relationship and the impacts on hydrological composition between major model parameters. Among the examined interactions, SCS runoff curve number (CN2) and soil bulk density (BD) show the strongest interaction and effects on surface runoff, lateral flow, percolation, groundwater flow, and soil water content. The interaction between CN2 and BD highlights the importance of the soil surface and topsoil for runoff generation processes. In addition, the soil-vegetation interactions show clear seasonal effects due to impacts from the changes in land use and precipitation patterns, which influence the river discharge and flow variability more significantly at the sub-basin scale than at the watershed scale. The insight into the interactions and hydrological effects of soil and vegetation may help improve the spatial planning for ecological sustainability and hydrological extrema mitigation with a more reliable reflection of the spatial heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Abbaspour, K. C. (2014). SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs - A User Manual. In Eawag, Swiss Federal Institute of Aquatic Science and Technology.

  • Abdelbaki, A. M. (2016). Evaluation of pedotransfer functions for predicting soil bulk density for U.S. soils. Ain Shams Engineering Journal, 9, 1611–1619. https://doi.org/10.1016/j.asej.2016.12.002

    Article  Google Scholar 

  • Ahuja, L. R., Ma, L., & Green, T. R. (2010). Effective soil properties of heterogeneous areas for modeling infiltration and redistribution. Soil Science Society of America Journal, 74, 1469–1482. https://doi.org/10.2136/SSSAJ2010.0073

    Article  CAS  Google Scholar 

  • Alvarenga, L. A., de Mello, C. R., Colombo, A., Cuartas, L. A., & Bowling, L. C. (2016). Assessment of land cover change on the hydrology of a Brazilian headwater watershed using the Distributed Hydrology-Soil-Vegetation Model. Catena, 143, 7–17. https://doi.org/10.1016/j.catena.2016.04.001

    Article  Google Scholar 

  • Amoakwah, E., Rahman, M. A., Nketia, K. A., Djouaka, R. F., Didenko, N. O., & Islam, K. R. (2021). Impact of deforestation and subsequent land-use change on soil quality. Eurasian Journal of Soil Science, 10, 150–160. https://doi.org/10.18393/EJSS.843861

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). Swat model use, calibration, and validation. Transactions of the ASABE, 55, 1491–1508. https://doi.org/10.13031/2013.42256

  • Asfaha, T. G., Frankl, A., Haile, M., Zenebe, A., & Nyssen, J. (2015). Determinants of peak discharge in steep mountain catchments – Case of the Rift Valley escarpment of Northern Ethiopia. Journal of Hydrology, 529, 1725–1739. https://doi.org/10.1016/j.jhydrol.2015.08.013

    Article  Google Scholar 

  • Assefa, F., Elias, E., Soromessa, T., & Ayele, G. T. (2020). Effect of changes in Land-use management practices on soil physicochemical properties in Kabe watershed, Ethiopia. Air, Soil and Water Research, 13, 2020. https://doi.org/10.1177/1178622120939587

    Article  Google Scholar 

  • Assi, A., Blake, J., Mohtar, R. H., & Braudeau, E. (2019). Soil aggregates structure-based approach for quantifying the field capacity, permanent wilting point and available water capacity. Irrigation Science, 37, 511–522. https://doi.org/10.1007/s00271-019-00630-w

    Article  Google Scholar 

  • Awad, J., van Leeuwen, J., Abate, D., Pichler, M., Bestland, E., Chittleborough, D. J., Fleming, N., Cohen, J., Liffner, J., & Drikas, M. (2015). The effect of vegetation and soil texture on the nature of organics in runoff from a catchment supplying water for domestic consumption. Science of the Total Environments, 529, 72–81. https://doi.org/10.1016/j.scitotenv.2015.05.037

    Article  CAS  Google Scholar 

  • Ayele, G. T., Seka, A. M., Taddese, H., Jemberrie, M. A., Ndehedehe, C. E., Demissie, S. S., Awange, J. L., Jeong, J., Hamilton, D. P., & Melesse, A. M. (2022). Relationship of attributes of soil and topography with land cover change in the Rift Valley Basin of Ethiopia. Remote Sensing, 14, 3257. https://doi.org/10.3390/rs14143257

    Article  Google Scholar 

  • Bawafi, H., Indra, T. L., Kusratmoko, E., & Damayanti, A. (2020). Spatial analysis of deforestation in water recharge area at the Toyoaning sub-watershed as a drought mitigation effort. IOP Conference Series: Earth and Environmental Science, 412, 012013. https://doi.org/10.1088/1755-1315/412/1/012013

    Article  Google Scholar 

  • Bo, H., Dong, X., Li, Z.-H., Reta, G., Li, L., & Wei, C. (2020). Analysis of water balance components and parameter uncertainties based on SWAT model with CMADS data and SUFI-2 algorithm in Huangbaihe River catchment, China. Nature Environment and Pollution Technology, 19, 637–650. https://doi.org/10.46488/nept.2020.v19i02.018

  • Charlier, J. B., Moussa, R., David, P.-Y., & Desprats, J. F. (2019). Quantifying peakflow attenuation/amplification in a karst river using the diffusive wave model with lateral flow. Hydrological Processes, 33, 2337–2354. https://doi.org/10.1002/hyp.13472

    Article  Google Scholar 

  • Chidowe, O. A., Haruna, H., & Oyinlola, E. Y. (2019). Slope position and land use effect on select soil properties, quality and carbon stock in surface soils at Afaka forest area, Northern Guinea Savanna of Nigeria. Current Journal of Applied Science and Technology, 32, 46375. https://doi.org/10.9734/CJAST/2019/46375

    Article  Google Scholar 

  • D’Amico, M., Gorra, R., & Freppaz, M. (2015). Small-scale variability of soil properties and soil–vegetation relationships in patterned ground on different lithologies (NW Italian Alps). Catena, 135, 47–58. https://doi.org/10.1016/j.catena.2015.07.005

    Article  CAS  Google Scholar 

  • Delang, C. O., & Zhen, Y. (2015). China’s Grain for Green Program. Springer International Publishing. https://doi.org/10.1007/978-3-319-11505-4

  • Deng, H., Dan, L., Xiao, Y., & Wang, Q. (2021). Testing the effects of incorporating TOPMODEL into the SSiB4/TRIFFID model and simulation of the response of vegetation dynamics and surface water cycle to climate changes in a subalpine basin of southwestern China. Ecohydrology, 14, e2338. https://doi.org/10.1002/eco.2338

    Article  Google Scholar 

  • Du, M., Zhang, J., Elmahdi, A., Wang, Z., Yang, Q., Liu, H., Liu, C., Hu, Y., Gu, N., Bao, Z., Liu, Y., Jin, J., & Wang, G. (2021). Variation characteristics and influencing factors of soil moisture content in the lime concretion black soil region in Northern Anhui. Water, 13, 2251. https://doi.org/10.3390/w13162251

    Article  Google Scholar 

  • Duku, C., & Hein, L. (2021). The impact of deforestation on rainfall in Africa: A data-driven assessment. Environmental Research Letters, 16, 064044. https://doi.org/10.1088/1748-9326/abfcfb

    Article  Google Scholar 

  • Dusek, J., Dohnal, M., & Vogel, T. (2018). Numerical analysis of ponded infiltration experiment under different experimental conditions. Soil and Water Research, 4, S22. https://doi.org/10.17221/1368-SWR

  • Eilander, D., van Verseveld, W. J., Yamazaki, D., Weerts, A. H., Winsemius, H. C., & Ward, P. J. (2021). A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models. Hydrology and Earth System Sciences, 25, 5287–5313. https://doi.org/10.5194/HESS-25-5287-2021

    Article  Google Scholar 

  • Ewane, B. E., & Lee, H.-H. (2020). Assessing land use/land cover change impacts on the hydrology of Nyong River Basin, Cameroon. Journal of Mountain Science, 17, 50–67. https://doi.org/10.1007/s11629-019-5611-8

    Article  Google Scholar 

  • Fackrell, J. K., Glenn, C. R., Thomas, D. M., Whittier, R. B., & Popp, B. N. (2020). Stable isotopes of precipitation and groundwater provide new insight into groundwater recharge and flow in a structurally complex hydrogeologic system: West Hawai‘i, USA. Hydrogeology Journal, 28, 1191–1207. https://doi.org/10.1007/s10040-020-02143-9

    Article  CAS  Google Scholar 

  • Fang, T., Chen, Y., Tan, H., Cao, J., Liao, J., & Huang, L. (2019). Flood risk evaluation in the middle reaches of the Yangtze River Based on eigenvector spatial filtering poisson regression. Water, 11(10), 1969. https://doi.org/10.3390/w11101969

    Article  Google Scholar 

  • Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Reviews of Geophysics, 45(2), 1–33. https://doi.org/10.1029/2005RG000183

    Article  Google Scholar 

  • Farr, T. G., & Kobrick, M. (2011). Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583–585. https://doi.org/10.1029/EO081i048p00583

    Article  Google Scholar 

  • Farrag, M., Perez, G. A. C., & Solomatine, D. P. (2021). Spatio-temporal hydrological model structure and parametrization analysis. Journal of Marine Science and Engineering, 9, 467. https://doi.org/10.3390/JMSE9050467

    Article  Google Scholar 

  • Gao, G., Fu, B., Wang, S., Liang, W., & Jiang, X. (2016). Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environments, 557–558, 331–342. https://doi.org/10.1016/j.scitotenv.2016.03.019

    Article  CAS  Google Scholar 

  • Gassman, P. W., Balmer, C., Siemers, M., & Srinivasan, R. (2014). The SWAT Literature Database: Overview of database structure and key SWAT literature trends 2014 International SWAT Conference, Pernambuco, Brazil.

  • George, C., & Leon L. F. (2008). WaterBase: SWAT in an Open Source GIS. Open Hydrology Journal, 2, 1–6. https://doi.org/10.2174/1874378100802010001

  • Goebes, P., Schmidt, K., Seitz, S., Both, S., Bruelheide, H., Erfmeier, A., Scholten, T., & Kühn, P. (2019). The strength of soil-plant interactions under forest is related to a critical soil depth. Scientific Reports, 9(1), 8635. https://doi.org/10.1038/s41598-019-45156-5

    Article  CAS  Google Scholar 

  • Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. L. B. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies, 15, 49–67. https://doi.org/10.1016/j.ejrh.2017.11.005

    Article  Google Scholar 

  • Hameed, H. M., Faqe, G. R., & Rasul, A. (2019). Effects of land cover change on surface runoff using GIS and remote sensing: A case study duhok sub-basin. Environmental Remote Sensing and GIS in Iraq. https://doi.org/10.1007/978-3-030-21344-2_9

    Article  Google Scholar 

  • Hanuf, A. A., Prijono, S., & Soemarno, S. (2021). Improvement of soil available water capacity using biopore infiltration hole with compost in a coffee plantation. Journal of Degraded and Mining Lands Management, 8, 2791–2799. https://doi.org/10.15243/JDMLM.2021.083.2791

  • Har, R., Aprisal, Darta Taifur, W., & Haria Aditia Putra, T. (2021). The effect of land uses to change on infiltration capacity and surface runoff at latung sub watershed, Padang City Indonesia. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202133108002

  • Hümann, M., Schüler, G., Müller, C., Schneider, R., Johst, M., & Caspari, T. (2011). Identification of runoff processes – The impact of different forest types and soil properties on runoff formation and floods. Journal of Hydrology, 409(3–4), 637–649. https://doi.org/10.1016/j.jhydrol.2011.08.067

    Article  Google Scholar 

  • Ichiba, A., Gires, A., Tchiguirinskaia, I., Schertzer, D., Bompard, P., & Veldhuis, M.-C.T. (2017). Scale effect challenges in urban hydrology highlighted with a distributed hydrological model. Hydrology and Earth System Sciences, 22, 331–350. https://doi.org/10.5194/HESS-22-331-2018

    Article  Google Scholar 

  • Kiguchi, M., Takata, K., Hanasaki, N., Archevarahuprok, B., Champathong, A., Ikoma, E., Jaikaeo, C., Kaewrueng, S., Kanae, S., Kazama, S., Kuraji, K., Matsumoto, K., Nakamura, S., Nguyen-Le, D., Noda, K., Piamsa-nga, N., Raksapatcharawong, M., Rangsiwanichpong, P., Ritphring, S., & Oki, T. (2020). A review of climate-change impact and adaptation studies for the water sector in Thailand. Environmental Research Letters, 16, 023004. https://doi.org/10.1088/1748-9326abce80

    Article  Google Scholar 

  • Klamerus-Iwan, A., & Błońska, E. (2018). Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes. Journal of Hydrology, 559, 534–540. https://doi.org/10.1016/J.JHYDROL.2018.02.032

    Article  Google Scholar 

  • Li, M., Di, Z., & Duan, Q. (2021a). Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2021.126896

    Article  Google Scholar 

  • Li, Y.-M., Wang, G., Liu, C., Lin, S., Guan, M., & Zhao, X. (2021b). Improving runoff simulation and forecasting with segmenting delay of baseflow from fast surface flow in Montane high-vegetation-covered catchments. Water, 13, 196. https://doi.org/10.3390/W13020196

    Article  CAS  Google Scholar 

  • Li, Z., Li, X., Zhou, S., Yang, X., Fu, Y. H., Miao, C., Wang, S., Zhang, G., Wu, X., Yang, C., & Deng, Y. (2022). A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances. Science China Earth Sciences. https://doi.org/10.1007/s11430-021-9990-5

    Article  Google Scholar 

  • Liu, J., Liu, Y., Xie, L., Dai, L., Zhang, Z., & Zhang, M. (2020). A threshold-like effect on the interaction between hydrological connectivity and dominant plant population in tidal marsh wetlands. Land Degradation & Development, 32, 2922–2935. https://doi.org/10.1002/ldr.3913

    Article  Google Scholar 

  • Liu, J., Zhang, Q., Singh, V. P., Song, C., Zhang, Y., Sun, P., & Gu, X. (2018a). Hydrological effects of climate variability and vegetation dynamics on annual fluvial water balance in global large river basins. Hydrology and Earth System Sciences, 22, 4047–4060. https://doi.org/10.5194/HESS-22-4047-2018

    Article  Google Scholar 

  • Liu, S., Hou, X., Yang, M., Cheng, F., Coxixo, A., Wu, X., & Zhang, Y. (2018b). Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. Catena, 165, 279–285. https://doi.org/10.1016/j.catena.2018.02.004

    Article  CAS  Google Scholar 

  • Lotz, T., Opp, C., & He, X. (2018). Factors of runoff generation in the Dongting Lake basin based on a SWAT model and implications of recent land cover change. Quaternary International, 475, 54–62. https://doi.org/10.1016/j.quaint.2017.03.057

    Article  Google Scholar 

  • Lozano-Parra, J., Schnabel, S., & Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951–961. https://doi.org/10.1016/j.jhydrol.2015.09.018

    Article  Google Scholar 

  • Ma, Y.-J., Li, X.-Y., Guo, L., & Lin, H. (2017). Hydropedology: Interactions between pedologic and hydrologic processes across spatiotemporal scales. Earth-Science Reviews, 171, 181–195. https://doi.org/10.1016/j.earscirev.2017.05.014

    Article  Google Scholar 

  • Magha, A. M., Azinwi Tamfuh, P., Mamdem, L. E., Shey Yefon, M. C., Kenzong, B., & Bitom, D. (2021). Soil water characteristics of gleysols in the Bamenda (Cameroon) wetlands and implications for agricultural management strategies. Applied and Environmental Soil Science, 2021, 1–15. https://doi.org/10.1155/2021/6643208

    Article  CAS  Google Scholar 

  • Martín-Arias, V., Evans, C. V., Griffin, R. E., Cherrington, E. A., Lee, C. M., Mishra, D. R., Gomez, N. A., Rosado, A., Callejas, I., Jay, J. A., & Rosado, S. (2022). Modeled impacts of LULC and climate change predictions on the hydrologic regime in Belize. Frontiers in Environmental Science, 10, 848085. https://doi.org/10.3389/fenvs.2022.848085

    Article  Google Scholar 

  • Metzger, C., Nilsson, M. B., Peichl, M., & Jansson, P.-E. (2016). Parameter interactions and sensitivity analysis for modelling carbon heat and water fluxes in a natural peatland, using CoupModel v5. Geoscientific Model Development, 9, 4313–4338. https://doi.org/10.5194/GMD-9-4313-2016

    Article  CAS  Google Scholar 

  • Meurer, K. H. E., Chenu, C., Coucheney, E., Herrmann, A. M., Keller, T., Kätterer, T., Nimblad Svensson, D., & Jarvis, N. (2020). Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter. Biogeosciences, 17, 5025–5042. https://doi.org/10.5194/bg-2020-135

    Article  CAS  Google Scholar 

  • Moniruzzaman, M., Thakur, P. K., Kumar, P., Alam, M. A., Garg, V., Rousta, I., & Ólafsson, H. (2021). Decadal urban land use/land cover changes and its impact on surface runoff potential for the Dhaka City and surroundings using remote sensing. Remote Sensing, 13, 83. https://doi.org/10.3390/rs13010083

    Article  Google Scholar 

  • Monteverde, S., Healy, M. G., O’Leary, D., Daly, E., & Callery, O. (2022). Management and rehabilitation of peatlands: The role of water chemistry, hydrology, policy, and emerging monitoring methods to ensure informed decision making. Ecological Informatics, 69, 101638. https://doi.org/10.1016/j.ecoinf.2022.101638

    Article  Google Scholar 

  • Morán-Tejeda, E., Zabalza, J., Rahman, K. S., Gago-Silva, A., López-Moreno, J. I., Vicente-Serrano, S. M., Lehmann, A., Tague, C. L., & Beniston, M. (2015). Hydrological impacts of climate and land-use changes in a mountain watershed: Uncertainty estimation based on model comparison. Ecohydrology, 8, 1396–1416. https://doi.org/10.1002/eco.1590

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153

  • NASA. (2013). NASA Shuttle Radar Topography Mission Global 1 arc second NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003

  • Naseem, B., Ajami, H., Cordery, I., & Sharma, A. (2015). A multi-objective assessment of alternate conceptual ecohydrological models. Journal of Hydrology, 529, 1221–1234. https://doi.org/10.1016/J.JHYDROL.2015.08.060

    Article  Google Scholar 

  • Nasiry, M. K., Said, S., & Ansari, S. A. (2022). Analysis of surface runoff and sediment yield under simulated rainfall. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-022-01471-x

    Article  Google Scholar 

  • Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.

  • O’Connor, J., Santos, M. J., Rebel, K. T., & Dekker, S. C. (2019). The influence of water table depth on evapotranspiration in the Amazon arc of deforestation. Hydrology and Earth System Sciences. https://doi.org/10.5194/HESS-23-3917-2019

    Article  Google Scholar 

  • Ogilvie, C. M., Ashiq, W., Vasava, H. B., & Biswas, A. (2021). Quantifying root-soil interactions in cover crop systems: A review. Agriculture. https://doi.org/10.3390/AGRICULTURE11030218

    Article  Google Scholar 

  • Okakita, N., Iwatake, K., Hirata, H., & Ueda, A. (2018). Contribution of precipitation to groundwater flow systems in three major alluvial fans in Toyama Prefecture, Japan: Stable-isotope characterization and application to the use of groundwater for urban heat exchangers. Hydrogeology Journal, 27, 345–362. https://doi.org/10.1007/s10040-018-1850-y

    Article  CAS  Google Scholar 

  • Panday, D., & Nkongolo, N. V. (2021). No tillage improved soil pore space indices under cover crop and crop rotation. Soil Systems, 5(3), 38. https://doi.org/10.3390/SOILSYSTEMS5030038

    Article  CAS  Google Scholar 

  • Raiter, K., Prober, S. M., Possingham, H. P., Westcott, F., & Hobbs, R. J. (2018). Linear infrastructure impacts on landscape hydrology. Journal of Environmental Management, 206, 446–457. https://doi.org/10.1016/j.jenvman.2017.10.036

    Article  Google Scholar 

  • Rasouli, K., Pomeroy, J. W., & Whitfield, P. H. (2019). Are the effects of vegetation and soil changes as important as climate change impacts on hydrological processes? Hydrology and Earth System Sciences, 23, 4933–4954. https://doi.org/10.5194/HESS-23-4933-2019

    Article  Google Scholar 

  • Richardson, C. M., Zimmer, M. A., Fackrell, J. K., & Paytan, A. (2020). Geologic controls on source water drive baseflow generation and carbon geochemistry: Evidence of nonstationary saseflow sources across multiple subwatersheds. Water Resources Research, 56, e2019WR026577. https://doi.org/10.1029/2019WR026577

    Article  CAS  Google Scholar 

  • Rizzo, C. B., Song, X., de Barros, F. P. J., & Chen, X. (2020). Temporal flow variations interact with spatial physical heterogeneity to impact solute transport in managed river corridors. Journal of Contaminant Hydrology, 235, 103713. https://doi.org/10.1016/j.jconhyd.2020.103713

    Article  CAS  Google Scholar 

  • Robinson, M., Cognard-Plancq, A. L., Cosandey, C., David, J., Durand, P., Führer, H. W., Hall, R., Hendriques, M. O., Marc, V., McCarthy, R., McDonnell, M., Martin, C., Nisbet, T., O’Dea, P., Rodgers, M., & Zollner, A. (2003). Studies of the impact of forests on peak flows and baseflows: A European perspective. Forest Ecology and Management, 186(1–3), 85–97. https://doi.org/10.1016/s0378-1127(03)00238-x

    Article  Google Scholar 

  • Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Afana, A., & Solé-Benet, A. (2012). Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology, 145–146, 81–89. https://doi.org/10.1016/j.geomorph.2011.12.042

    Article  Google Scholar 

  • Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382. https://doi.org/10.1109/5.838084

    Article  Google Scholar 

  • Rumsey, C. A., Miller, M. P., Susong, D. D., Tillman, F. D., & Anning, D. W. (2015). Regional scale estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin. Journal of Hydrology: Regional Studies, 4, 91–107. https://doi.org/10.1016/j.ejrh.2015.04.008

    Article  Google Scholar 

  • Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-Y., Juang, H.-M.H., Sela, J., & Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058. https://doi.org/10.1175/2010bams3001.1

    Article  Google Scholar 

  • Samouelian, A., Finke, P. A., Goddéris, Y., & Cornu, S. (2012). Hydrologic information in pedologic models. The Netherlands, Elsevier.

    Book  Google Scholar 

  • Shi, D., Tan, H., Chen, X., Rao, W., Issombo, H. E., & Basang, R. (2021). Temporal and spatial variations of runoff composition revealed by isotopic signals in Nianchu River catchment, Tibet. Journal of Hydro-Environment Research, 37, 1–12. https://doi.org/10.1016/J.JHER.2021.04.001

    Article  Google Scholar 

  • Shrestha, S., Cui, S., Xu, L., Wang, L., Manandhar, B., & Ding, S. (2021). Impact of land use change due to urbanisation on surface runoff using GIS-based SCS–CN method: A case study of Xiamen City, China. Land, 10(8), 839. https://doi.org/10.3390/land10080839

    Article  Google Scholar 

  • Silva-Júnior, R. O. D., Souza-Filho, P. W. M., Salomão, G. N., Tavares, A. L., Santos, J. F. D., Santos, D. C., Dias, L. C., Silva, M. S. D., Melo, A. M. Q., Costa, C. E. A. D. S., & Rocha, E. J. P. D. (2021). Response of water balance components to changes in soil use and vegetation cover over three decades in the Eastern Amazon. Frontiers in Water, 3, 749507. https://doi.org/10.3389/frwa.2021.749507

    Article  Google Scholar 

  • Sobaga, A., Habets, F., Decharme, B., & Enjelvin, N. (2021). How soil hydrology reacts during strong precipitation events? Egugeneral Assembly. https://doi.org/10.5194/egusphere-egu21-4128

    Article  Google Scholar 

  • Song, L., Li, J. H., Zhou, T., & Fredlund, D. G. (2017). Experimental study on unsaturated hydraulic properties of vegetated soil. Ecological Engineering, 103, 207–216. https://doi.org/10.1016/j.ecoleng.2017.04.013

    Article  Google Scholar 

  • Song, S., & Wang, W. (2019). Impacts of antecedent soil moisture on the rainfall–runoff transformation process based on high-resolution observations in soil tank experiments. Water, 94, 54–62. https://doi.org/10.3390/W11020296

    Article  Google Scholar 

  • Speich, M. J. R., Zappa, M., Scherstjanoi, M., & Lischke, H. (2020). FORests and hydrology under climate change in Switzerland v1.0: A spatially distributed model combining hydrology and forest dynamics. Geoscientific Model Development, 13, 537–564. https://doi.org/10.5194/gmd-13-537-2020

    Article  Google Scholar 

  • Sun, Z., Lotz, T., & Chang, N.-B. (2017). Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. Journal of Environmental Management, 204(1), 92–101. https://doi.org/10.1016/j.jenvman.2017.08.043

    Article  Google Scholar 

  • Sun, Z., Lotz, T., & Huang, Q. (2021). An ET-based two-phase method for the calibration and application of distributed hydrological models. Water Resources Management, 35(3), 1065–1077. https://doi.org/10.1007/s11269-021-02774-x

    Article  Google Scholar 

  • Tang, C., Liu, Y., Li, Z., Guo, L., Xu, A., & Zhao, J. F. (2021). Effectiveness of vegetation cover pattern on regulating soil erosion and runoff generation in red soil environment, southern China. Ecological Indicators, 129, 107956. https://doi.org/10.1016/J.ECOLIND.2021.107956

    Article  Google Scholar 

  • Tetzlaff, D., & Soulsby, C. (2008). Sources of baseflow in larger catchments – Using tracers to develop a holistic understanding of runoff generation. Journal of Hydrology, 359(3–4), 287–302. https://doi.org/10.1016/j.jhydrol.2008.07.008

    Article  CAS  Google Scholar 

  • Trenčiansky, M., Štěrbová, M., Výbošťok, J., & Lieskovský, M. (2021). Impacts of forest cover on surface runoff quality in small catchments. BioResources, 16(4), 7830–7845. https://doi.org/10.15376/biores.16.4.7830-7845

  • Valiente, M. R., Zabaleta, A., Meaurio, M., Uriarte, J. A., & Antigüedad, I. (2020). Evaluation of land cover effects on soil-moisture dynamics: Adaptation measures from the territory (Bidasoa catchment, Western Pyrenees).

  • Vogel, H. J. (2019). Scale issues in soil hydrology. Vadose Zone Journal, 18, 1–10. https://doi.org/10.2136/vzj2019.01.0001

    Article  CAS  Google Scholar 

  • Voltr, V., Menšík, L., Hlisnikovský, L., Hruška, M., Pokorný, E., & Pospíšilová, Ľ. (2021). The soil organic matter in connection with soil properties and soil inputs. Agronomy, 11, 779. https://doi.org/10.3390/AGRONOMY11040779

    Article  CAS  Google Scholar 

  • Wang, Y., Gao, L., Huang, S., & Peng, X. (2022). Combined effects of rainfall types and antecedent soil moisture on runoff generation at a hillslope of red soil region. European Journal of Soil Science, 73, e13274. https://doi.org/10.1111/ejss.13274

    Article  CAS  Google Scholar 

  • Zhang, R., Zhao, X., Zhang, C.-C., & Li, J. (2020). Impact of rapid and intensive land use/land cover change on soil properties in aArid regions: A case study of Lanzhou New Area, China. Sustainability, 12, 9226. https://doi.org/10.3390/su12219226

    Article  Google Scholar 

  • Zhang, Y., Fang, G., Tang, Z.-Y., Wen, X., Zhang, H., Ding, Z., Li, X., Bian, X., & Hu, Z. (2021). Changes in flood regime of the upper Yangtze River. Frontiers in Earth Science, 9, 650882. https://doi.org/10.3389/feart.2021.650882

    Article  Google Scholar 

  • Zhang, Y. W., Deng, L., Yan, W. M., & Shangguan, Z. P. (2016). Interaction of soil water storage dynamics and long-term natural vegetation succession on the Loess Plateau, China. Catena, 137, 52–60. https://doi.org/10.1016/j.catena.2015.08.016

    Article  Google Scholar 

  • Zhao, L., Hou, R., Wu, F., & Keesstra, S. (2018). Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil and Tillage Research, 179, 47–53. https://doi.org/10.1016/j.still.2018.01.009

    Article  Google Scholar 

  • Zhou, G., Wei, X., Wu, Y., Liu, S., Huang, Y., Yan, J., Zhang, D., Zhang, Q., Liu, J., Meng, Z., Wang, C., Chu, G., Liu, S., Tang, X., & Liu, X. (2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China. Global Change Biology, 17(12), 3736–3746. https://doi.org/10.1111/j.1365-2486.2011.02499.x

    Article  Google Scholar 

  • Ziqi, L., She, R., Kangning, X., Yuan, L., & Cai, L. (2021). Effect of vegetation restoration on soil hydrology in karst area of Southwest China: Inspiration from barrel planting experiments. Water, 13, 1719. https://doi.org/10.3390/w13131719

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program (2022YFC3204103, 2019YFA0607100), the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0202), the Strategic Priority of the Chinese Academy of Sciences (XDA23000000), the National Geographic Air and Water Conservation Fund (GEFC09-15), the Natural Science Foundation of China (41671028), the Sino-German Scientific Center (GZ1213) and the scientific research start-up fund for high-level talents of Jinling Institute of Technology (jit-b-202139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhandong Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotz, T., Sun, Z. & Xue, B. Evaluation of soil-vegetation interaction effects on water fluxes revealed by the proxy of model parameter combinations. Environ Monit Assess 195, 283 (2023). https://doi.org/10.1007/s10661-022-10901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10901-3

Keywords

Navigation