Skip to main content

Advertisement

Log in

Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This research aims to assess the urban growth and impact on land surface temperature (LST) of Lahore, the second biggest city in Pakistan. In this research, various geographical information system (GIS) and remote sensing (RS) techniques (maximum likelihood classification (MLC)) LST, and different normalized satellite indices have been implemented to analyse the spatio-temporal trends of Lahore city; by using Landsat for 1990, 2004, and 2018. The development of integrated use of RS and GIS and combined cellular automata–Markov models has provided new means of assessing changes in land use and land cover and has enabled the projection of trajectories into the future. Results indicate that the built-up area and bare area increased from 15,541 (27%) to 23,024 km2 (40%) and 5756 km2 (10%) to 13,814 km2 (24%). Meanwhile, water area and vegetation were decreased from 2302 km2 (4%) to 1151 km2 (2%) and 33,961 km2 (59%) to 19,571 km2 (34%) respectively. Under this urbanization, the LST of the city was also got affected. In 1990, the mean LST of most of the area was between 14 and 28 ℃, which rose to 22–28 ℃ in 2004 and 34 to 36 ℃ in 2018. Because of the shift of vegetation and built-up land, the surface reflectance and roughness of each land use land cover (LULC) class are different. The analysis established a direct correlation between Normalized Difference Water Index (NDWI), Normalized Difference Vegetation Index (NDVI) with LST and an indirect correlation among Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI), and Built-up Index (BI) with LST. The results are important for the planning and development department since they may be used to guarantee the sustainable utilization of land resources for future urbanization expansion projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are not publicly available but from the corresponding author at reasonable request.

References

  • Abbas, I., Liu, J., Amin, M., Tariq, A., & Tunio, M. H. (2021). Strawberry fungal leaf scorch disease identification in real-time strawberry field using deep learning architectures. Plants, 10(12), 2643. https://doi.org/10.3390/plants10122643

    Article  Google Scholar 

  • Abdullahi, S., & Pradhan, B. (2018). Land use change modeling and the effect of compact city paradigms: Integration of GIS-based cellular automata and weights-of-evidence techniques. Environmental Earth Sciences, 77(6), 1–15. https://doi.org/10.1007/s12665-018-7429-z

    Article  Google Scholar 

  • Adelabu, S., Mutanga, O., Adam, E., & Cho, M. A. (2013). Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image. Journal of Applied Remote Sensing, 7(1), 073480. https://doi.org/10.1117/1.jrs.7.073480

    Article  Google Scholar 

  • Ahmad, A., Ahmad, S. R., Gilani, H., Tariq, A., Zhao, N., Aslam, R. W., & Mumtaz, F. (2021). A synthesis of spatial forest assessment studies using remote sensing data and techniques in Pakistan. Forests, 12(9), 1211. https://doi.org/10.3390/f12091211

    Article  Google Scholar 

  • Ahmed, B., & Ahmed, R. (2012). Modeling urban land cover growth dynamics using multioral satellite images: A case study of Dhaka. Bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3–31. https://doi.org/10.3390/ijgi1010003

    Article  Google Scholar 

  • Ahmed, B., Kamruzzaman, M. D., Zhu, X., Shahinoor Rahman, M. D., & Choi, K. (2013). Simulating land cover changes and their impacts on land surface temperature in Dhaka. Bangladesh. Remote Sensing, 5(11), 5969–5998. https://doi.org/10.3390/rs5115969

    Article  Google Scholar 

  • Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra. Portugal. Remote Sensing, 2(6), 1549–1563. https://doi.org/10.3390/rs2061549

    Article  Google Scholar 

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2012). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(1), 265–275. https://doi.org/10.1016/j.jag.2011.12.014

    Article  Google Scholar 

  • Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), 313–329. https://doi.org/10.1016/0034-4257(82)90043-8

  • Baloch, M. Y. J., Zhang, W., Chai, J., Li, S., Alqurashi, M., Rehman, G., et al. (2021). Shallow groundwater quality assessment and its suitability analysis for drinking and irrigation purposes. Water (switzerland), 13(23), 1–25. https://doi.org/10.3390/w13233361

    Article  CAS  Google Scholar 

  • Baqa, M. F., Chen, F., Lu, L., Qureshi, S., Tariq, A., Wang, S., et al. (2021). Monitoring and modeling the patterns and trends of urban growth using urban sprawl matrix and CA-Markov model: A case study of Karachi, Pakistan. Land, 10(7). https://doi.org/10.3390/land10070700

  • Behera, M. D., Borate, S. N., Panda, S. N., Behera, P. R., & Roy, P. S. (2012). Modelling and analyzing the watershed dynamics using Cellular Automata (CA)-Markov model - A geo-information based approach. Journal of Earth System Science, 121(4), 1011–1024. https://doi.org/10.1007/s12040-012-0207-5

    Article  Google Scholar 

  • Bengston, D. N., Potts, R. S., Fan, D. P., & Goetz, E. G. (2005). An analysis of the public discourse about urban sprawl in the United States: Monitoring concern about a major threat to forests. Forest Policy and Economics, 7(5), 745–756. https://doi.org/10.1016/j.forpol.2005.03.010

    Article  Google Scholar 

  • Bernstein, L. S., Adler-Golden, S. M., Sundberg, R. L., Levine, R. Y., Perkins, T. C., Berk, A., et al. (2005). Validation of the Quick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 5806(March 2018), 668. https://doi.org/10.1117/12.603359

  • Bhalli, M., & Ghaffar, A. (2015). Use of geospatial techniques in monitoring urban expansion and land use change analysis: A case of Lahore, Pakistan. Journal of Basic & Applied Sciences, 11, 265–273. https://doi.org/10.6000/1927-5129.2015.11.38

    Article  Google Scholar 

  • Bhalli, M. N., Ghaffar, A., Shirazi, S. A., & Parveen, N. (2013). Use of multi-temporal digital data to monitor LULC changes in Faisalabad-Pakistan. Pakistan Journal of Science, 65(1), 58–62.

    Google Scholar 

  • Block, A. H., Livesley, S. J., & Williams, N. S. G. (2012). Responding to the urban heat island: A review of the potential of green infrastructure. Victorian Centre for Climate Change Adaptation Research Melbourne.

  • Braimah, M. M., Abdul-rahaman, I., Sekyere, D. O., Momori, P. H., Abdul-mohammed, A., & Dordah, G. A. (2014). Assessment of waste management systems in second cycle institutions of the Bolgatanga Municipality, Upper East, Ghana. International Journal of Pure & Applied Bioscience, 2(1), 189–195.

    Google Scholar 

  • Browning, D. M., & Duniway, M. C. (2011). Digital soil mapping in the absence of field training data: A case study using terrain attributes and semiautomated soil signature derivation to distinguish ecological potential. Applied and Environmental Soil Science, 2011, 1–12. https://doi.org/10.1155/2011/421904

    Article  Google Scholar 

  • Chang, C. R., Li, M. H., & Chang, S. D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4), 386–395. https://doi.org/10.1016/j.landurbplan.2006.09.005

    Article  Google Scholar 

  • Chen, W., Chen, Y., Tsangaratos, P., Ilia, I., & Wang, X. (2020). Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments. Remote Sensing, 12(23), 1–26. https://doi.org/10.3390/rs12233854

    Article  CAS  Google Scholar 

  • Coastline, K., Kanwal, S., Ding, X., & Wu, S. (2022). Vertical ground displacements and its impact on erosion along the Karachi coastline, Pakistan. Remote Sensing, 33(10), 14. https://doi.org/10.3390/rs14092054

  • Dewan, A., Kiselev, G., & Botje, D. (2021). Diurnal and seasonal trends and associated determinants of surface urban heat islands in large Bangladesh cities. Applied Geography, 135(March), 102533. https://doi.org/10.1016/j.apgeog.2021.102533

    Article  Google Scholar 

  • Ding, H., & Shi, W. (2013). Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. International Journal of Remote Sensing, 34(15), 5503–5517. https://doi.org/10.1080/01431161.2013.792966

    Article  Google Scholar 

  • Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. International Journal of Remote Sensing, 29(4), 1053–1073. https://doi.org/10.1080/01431160701281072

    Article  Google Scholar 

  • Fu, X., Wang, X., & Yang, Y. J. (2018). Deriving suitability factors for CA-Markov land use simulation model based on local historical data. Journal of Environmental Management, 206, 10–19. https://doi.org/10.1016/j.jenvman.2017.10.012

    Article  Google Scholar 

  • Ghaderizadeh, S., Abbasi-Moghadam, D., Sharifi, A., Zhao, N., & Tariq, A. (2021). Hyperspectral image classification using a hybrid 3D–2D convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7570–7588. https://doi.org/10.1109/JSTARS.2021.3099118

    Article  Google Scholar 

  • Gong, P., & Howarth, P. J. (1990). The use of structural information for improving land-cover classification accuracies at the rural-urban fringe. Photogrammetric Engineering & Remote Sensing, 56(1), 67–73.

    Google Scholar 

  • Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6), 1–6. https://doi.org/10.1029/2006GL029127

    Article  Google Scholar 

  • Guru, B., Seshan, K., & Bera, S. (2017). Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. Journal of King Saud University - Science, 29(3), 333–347. https://doi.org/10.1016/j.jksus.2016.08.003

    Article  Google Scholar 

  • Handayani, H. H., Estoque, R. C., & Murayama, Y. (2018). Estimation of built-up and green volume using geospatial techniques: A case study of Surabaya, Indonesia. Sustainable Cities and Society, 37(October 2017), 581–593. https://doi.org/10.1016/j.scs.2017.10.017

  • Hashem, N., & Balakrishnan, P. (2015). Change analysis of land use/land cover and modelling urban growth in Greater Doha. Qatar. Annals of GIS, 21(3), 233–247. https://doi.org/10.1080/19475683.2014.992369

    Article  Google Scholar 

  • Hou, H., Wang, R., & Murayama, Y. (2019). Scenario-based modelling for urban sustainability focusing on changes in cropland under rapid urbanization: A case study of Hangzhou from 1990 to 2035. Science of the Total Environment, 661, 422–431. https://doi.org/10.1016/j.scitotenv.2019.01.208

    Article  CAS  Google Scholar 

  • Hu, P., Sharifi, A., Tahir, M. N., Tariq, A., Zhang, L., Mumtaz, F., & Shah, S. H. I. A. (2021). Evaluation of vegetation indices and phenological metrics using time-series MODIS data for monitoring vegetation change in Punjab. Pakistan. Water, 13(18), 2550. https://doi.org/10.3390/w13182550

    Article  Google Scholar 

  • Hua, A. K., & Ping, O. W. (2018). The influence of land-use/land-cover changes on land surface temperature: A case study of Kuala Lumpur metropolitan city. European Journal of Remote Sensing, 51(1), 1049–1069. https://doi.org/10.1080/22797254.2018.1542976

    Article  Google Scholar 

  • Hussain, S., Lu, L., Mubeen, M., Nasim, W., Karuppannan, S., Fahad, S., et al. (2022). Spatiotemporal variation in land use land cover in the response to local climate change using multispectral remote sensing data. Land, 11(5), 595. https://doi.org/10.3390/land11050595

    Article  Google Scholar 

  • Islam, F., Riaz, S., Ghaffar, B., Tariq, A., Shah, S. U., Nawaz, M., et al. (2022). Landslide susceptibility mapping (LSM) of Swat District, Hindu Kush Himalayan region of Pakistan, using GIS-based bivariate modeling. Frontiers in Environmental Science, 10(October), 1–18. https://doi.org/10.3389/fenvs.2022.1027423

    Article  CAS  Google Scholar 

  • Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A., & Qin, S. (2022). Modeling and predicting land use land cover spatiotemporal changes: A case study in Chalus watershed. Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5496–5513. https://doi.org/10.1109/JSTARS.2022.3189528

    Article  Google Scholar 

  • Majeed, M., Tariq, A., Anwar, M. M., Khan, A. M., Arshad, F., Mumtaz, F., et al. (2021). Monitoring of land use–land cover change and potential causal factors of climate change in Jhelum District, Punjab, Pakistan, through GIS and Multi-Temporal Satellite Data. Land, 10(10), 1026. https://doi.org/10.3390/land10101026

    Article  Google Scholar 

  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/aoms/1177730491

    Article  Google Scholar 

  • McCaw, W. L., Smith, J. A., & Neal, J. E. (1994). Stem damage and crown recovery following high intensity fire in a 16-year-old stand of Eucalyptus diversicolor and Eucalyptus muellerana. Australian Forestry, 57(2), 76–81. https://doi.org/10.1080/00049158.1994.10676118

    Article  Google Scholar 

  • Meng, Q., Liu, Z., & Borders, B. E. (2013). Assessment of regression kriging for spatial interpolation - Comparisons of seven GIS interpolation methods. Cartography and Geographic Information Science, 40(1), 28–39. https://doi.org/10.1080/15230406.2013.762138

    Article  Google Scholar 

  • Morshed, S. R., & Fattah, M. A. (2021). Responses of spatiotemporal vegetative land cover to meteorological changes in Bangladesh. Remote Sensing Applications: Society and Environment, 24(March), 100658. https://doi.org/10.1016/j.rsase.2021.100658

    Article  Google Scholar 

  • Mosammam, H. M., Nia, J. T., Khani, H., Teymouri, A., & Kazemi, M. (2017). Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. Egyptian Journal of Remote Sensing and Space Science, 20(1), 103–116. https://doi.org/10.1016/j.ejrs.2016.08.002

    Article  Google Scholar 

  • Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., et al. (2016). Water observations from space: Mapping surface water from 25years of Landsat imagery across Australia. Remote Sensing of Environment, 174, 341–352. https://doi.org/10.1016/j.rse.2015.11.003

    Article  Google Scholar 

  • Mumtaz, F., Arshad, A., Mirchi, A., Tariq, A., Dilawar, A., Hussain, S., et al. (2021). Impacts of reduced deposition of atmospheric nitrogen on coastal marine eco-system during substantial shift in human activities in the twenty-first century. Geomatics, Natural Hazards and Risk, 12(1), 2023–2047. https://doi.org/10.1080/19475705.2021.1949396

    Article  Google Scholar 

  • Mumtaz, F., Tao, Y., de Leeuw, G., Zhao, L., Fan, C., Elnashar, A., et al. (2020). Modeling spatio-temporal land transformation and its associated impacts on land surface temperature (LST). Remote Sensing, 12(18). https://doi.org/10.3390/RS12182987

  • Munir, N., Kiani, A., & Baig, A. (2016). Climate change and food security in pakistan: A time series analysis. Global Economics Review, I(I), 47–55. https://doi.org/10.31703/ger.2016(i-i).05

  • Mushore, T. D., Mutanga, O., Odindi, J., & Dube, T. (2018). Determining extreme heat vulnerability of Harare Metropolitan City using multispectral remote sensing and socio-economic data. Journal of Spatial Science. https://doi.org/10.1080/14498596.2017.1290558

    Article  Google Scholar 

  • Olubadewo-Joshua, O., & Ugom, K. M. (2019). Application of geospatial techniques in the locational planning of health care centers in Minna, Nigeria. Geosfera Indonesia, 3(3), 59. https://doi.org/10.19184/geosi.v3i3.8754

  • Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egyptian Journal of Remote Sensing and Space Science, 20(1), 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003

    Article  Google Scholar 

  • Pradhan, B., Oh, H. J., & Buchroithner, M. (2010). Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Natural Hazards and Risk, 1(3), 199–223. https://doi.org/10.1080/19475705.2010.498151

    Article  Google Scholar 

  • Prasad, P., Joseph, V., Chandra, P., & Kotha, M. (2022). Ecological informatics evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms. Ecological Informatics, 68(December 2021), 101522. https://doi.org/10.1016/j.ecoinf.2021.101522

  • Riaz, U., Abbas, Z., Zaman, Q., Mubashir, M., Jabeen, M., Zulqadar, S. A., et al. (2018). Evaluation of ground water quality for irrigation purposes and effect on crop yields: A GIS based study of Bahawalpur. Pakistan Journal of Agricultural Research, 31(1). https://doi.org/10.17582/journal.pjar/2018/31.1.29.36

  • Saitoh, T. S., Shimada, T., & Hoshi, H. (1996). Modeling and simulation of the Tokyo urban heat island. Atmospheric Environment, 30(20), 3431–3442. https://doi.org/10.1016/1352-2310(95)00489-0

    Article  CAS  Google Scholar 

  • Sayemuzzaman, M., & Jha, M. K. (2014). Modeling of future land cover land use change in north carolina using Markov chain and cellular automata model. American Journal of Engineering and Applied Sciences, 7(3), 295–306. https://doi.org/10.3844/ajeassp.2014.295.306

    Article  Google Scholar 

  • Shah, S. H. I. A., Yan, J., Ullah, I., Aslam, B., Tariq, A., Zhang, L., & Mumtaz, F. (2021). Classification of aquifer vulnerability by using the DRASTIC index and geo-electrical techniques. Water, 13(16), 2144. https://doi.org/10.3390/w13162144

    Article  Google Scholar 

  • Shao, Z., Cai, J., Fu, P., Hu, L., & Liu, T. (2019). Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product. Remote Sensing of Environment, 235(June), 111425. https://doi.org/10.1016/j.rse.2019.111425

    Article  Google Scholar 

  • Sharifi, A., Felegari, S., Tariq, A., & Siddiqui, S. (2021). Forest cover change detection across recent three decades in Persian oak forests using convolutional neural network. Climate Impacts on Sustainable Natural Resource Management, (December), 57–73. https://doi.org/10.1002/9781119793403.ch4

  • Sharifi, A., Mahdipour, H., Moradi, E., & Tariq, A. (2022). Agricultural field extraction with deep learning algorithm and satellite imagery. Journal of the Indian Society of Remote Sensing, 50(2), 417–423. https://doi.org/10.1007/s12524-021-01475-7

    Article  Google Scholar 

  • Srivanit, M., Hokao, K., & Phonekeo, V. (2012). Assessing the impact of urbanization on urban thermal environment: a case study of Bangkok Metropolitan. International Journal of Applied Science and Technology, 2(7), 243–256. http://www.ijastnet.com/journals/Vol_2_No_7_August_2012/26.pdf

  • Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. FAO Irrigation and drainage paper 61. FAO, Rome.

  • Tariq, A., Riaz, I., & Ahmad, Z. (2020). Land surface temperature relation with normalized satellite indices for the estimation of spatio-temporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environmental Earth Sciences, 79(1), 1–15. https://doi.org/10.1007/s12665-019-8766-2

  • Tariq, A., & Mumtaz, F. (2020). Modeling spatio-temporal assessment of land use land cover of Lahore and its impact on land surface temperature using multi-spectral. Remote Sensing Data. https://doi.org/10.1007/s11356-022-23928-3

  • Tariq, A., & Shu, H. (2020). CA-Markov chain analysis of seasonal land surface temperature and land use landcover change using optical multi-temporal satellite data of Faisalabad. Pakistan. Remote Sensing, 12(20), 1–23. https://doi.org/10.3390/rs12203402

  • Tariq, A., Shu, H., Siddiqui, S., Imran, M., & Farhan, M. (2021). Monitoring land use and land cover changes using geospatial techniques, a case study of Fateh Jang, Attock, Pakistan. Geography, Environment, Sustainability, 14(1), 41–52. https://doi.org/10.24057/2071-9388-2020-117

  • Tien Bui, D., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44. https://doi.org/10.1016/j.agrformet.2016.11.002

    Article  Google Scholar 

  • Triantakonstantis, D., & Mountrakis, G. (2012). Urban growth prediction: A review of computational models and human perceptions. Journal of Geographic Information System, 04(06), 555–587. https://doi.org/10.4236/jgis.2012.46060

    Article  Google Scholar 

  • Vivekanandan, N. (2018). Comparison of probability distributions in extreme value analysis of rainfall and temperature data. Environmental Earth Sciences, 77(5), 1–10. https://doi.org/10.1007/s12665-018-7356-z

    Article  Google Scholar 

  • Wahla, S. S., Kazmi, J. H., Sharifi, A., Shirazi, S. A., Tariq, A., & Joyell Smith, H. (2022). Assessing spatio-temporal mapping and monitoring of climatic variability using SPEI and RF machine learning models. Geocarto International, 1–20. https://doi.org/10.1080/10106049.2022.2093411

  • Xiao, J. Y., Chang, C. P., Ge, J. F., & Shen, Y. J. (2007). Evaluating urbanization and its impacts on local hydrological environment change in Shijiazhuang, China, using remote sensing. IAHS-AISH Publication, 316, 261–268.

    Google Scholar 

  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  • Xu, L. Y., Xie, X. D., & Li, S. (2013). Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environmental Pollution, 178, 102–114. https://doi.org/10.1016/j.envpol.2013.03.006

    Article  CAS  Google Scholar 

  • Yadava, A. K., Bräuning, A., Singh, J., & Yadav, R. R. (2016). Boreal spring precipitation variability in the cold arid western Himalaya during the last millennium, regional linkages, and socio-economic implications. Quaternary Science Reviews, 144, 28–43. https://doi.org/10.1016/j.quascirev.2016.05.008

    Article  Google Scholar 

  • Yang, F. (2004). Turbo decoder using local subsidiary maximum likelihood decoding in prior estimation of the extrinsic information. Journal of Electronics (china), 21(2), 89–96. https://doi.org/10.1007/BF02687822

    Article  Google Scholar 

  • Yohannes, H., Soromessa, T., Argaw, M., & Dewan, A. (2021). Impact of landscape pattern changes on hydrological ecosystem services in the Beressa watershed of the Blue Nile Basin in Ethiopia. Science of the Total Environment, 793, 148559. https://doi.org/10.1016/j.scitotenv.2021.148559

    Article  CAS  Google Scholar 

  • Yulianto, F., Maulana, T., & Khomarudin, M. R. (2019). Analysis of the dynamics of land use change and its prediction based on the integration of remotely sensed data and CA-Markov model, in the upstream Citarum Watershed, West Java. Indonesia. International Journal of Digital Earth, 12(10), 1151–1176. https://doi.org/10.1080/17538947.2018.1497098

    Article  Google Scholar 

  • Zhang, Y. (2002). Problems in the fusion of commercial high-resolution satelitte as well as Landsat 7 images and initial solutions. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(4), 587–592.

    Google Scholar 

  • Zhao, G., Pang, B., Xu, Z., Peng, D., & Xu, L. (2019). Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of the Total Environment, 659, 940–949. https://doi.org/10.1016/j.scitotenv.2018.12.217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to pay extraordinary and heart whelming thanks to NASA-Earth data for providing us Landsat data for analysis. The authors would like to thank Stephen C. McClure for his enthusiastic support and valuable suggestions during the review of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Aqil Tariq and Faisal Mumtaz conducted the overall analysis and led the writing of the manuscript, design, and data analysis. Xing Zheng provided technical inputs for reviewed the paper. Faisal Mumtaz and Muhammad Majeed lend their support to the authors for writing the analysis of Landsat data.

Corresponding author

Correspondence to Aqil Tariq.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, A., Mumtaz, F., Majeed, M. et al. Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environ Monit Assess 195, 114 (2023). https://doi.org/10.1007/s10661-022-10738-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10738-w

Keywords

Navigation