Skip to main content
Log in

Performance assessment of NOVA SDS011 low-cost PM sensor in various microenvironments

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Over the last 10 years, as a possible alternative to the conventional approach to air quality monitoring, real-time monitoring systems that use low-cost sensors and sensor platforms have been frequently applied. Generally, the long-term characteristics of low-cost PM sensors and monitoring have not been thoroughly documented except for a few widely used sensors and monitors. This article addresses the laboratory and field validation of three low-cost PM monitors of the same type that use the NOVA SDS011 PM sensor module over a 1-year period. In outdoor environments, we co-located low-cost PM monitors with GRIMM EDM180 monitors at the National Air Quality Monitoring stations. In indoor environments, we co-located them with a Turnkey Osiris PM monitor. Several performance aspects of the PM monitors were examined: operational data coverage, linearity of response, accuracy, precision, and inter-sensor variability. The obtained results show that inter-monitor R values were typically higher than 0.95 regardless of the environment. The tested monitors demonstrate high linearity in comparison with PM10 and PM2.5 concentrations measured in outdoor air with reference-equivalent instrumentation with R2 values ranging from 0.52 up to 0.83. In addition, very good agreement (R2 values ranging from 0.93 up to 0.97) with the gravimetric PM10 and PM2.5 method is obtained in the indoor environment (30 < RH < 70%). High RH (over 70%) negatively affected the PM monitors’ response, especially in the case of PM10 concentrations (high overestimation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adgate, J. L., Mongin, S. J., Pratt, G. C., Zhang, J., Field, M. P., Ramachandran, G., & Sexton, K. (2007). Relationship between personal, indoor and outdoor exposure to trace elements in PM2.5. Science of the Total Environment, 386, 21–32.

    Article  CAS  Google Scholar 

  • Alfano, B., Barretta, L., Del Giudice, A., de Vito, S., Di Francia, G., Esposito, E., Formisano, F., Massera, E., Miglietta, M.L., Polichetti, T. (2020). A review of low-cost particulate matter sensors from the developers’ perspectives. Sensors, 20, Article 6819

  • Arduino. (2021). Retrived from http://store.arduino.cc/products/arduino-mega-2560-rev3 Accessed 26 Jan 2022

  • Badura, M., Batog, P., Drzeniecka-Osiadacz, A., Modzel P. (2018). Evaluation of low-cost sensors for ambient PM2.5 monitoring. Journal of Sensors, 2018, Article 5096540 https://doi.org/10.1155/2018/5096540

  • Briggs, D., de Hoogh, K., Morris, C., & Gulliver, J. (2008). Effects of travel mode on exposures to particulate air pollution. Environment International, 34, 12–22.

    Article  CAS  Google Scholar 

  • Budde, M., Schwarz, A. D., Müller, T., Laquai, B., Streibl, N., Schindler, G., Köpke, M., Riedel, T., Dittler, A., Beigl, M. (2018). Potential and limitations of the low-cost SDS011 particle sensor for monitoring urban air quality, https://doi.org/10.14644/dust.2018.002

  • Chakrabarti, B., Fine, P. M., Delfino, R., & Sioutas, C. (2004). Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. Atmospheric Environment, 38, 3329–3340.

    Article  CAS  Google Scholar 

  • Crilley, L. R., Shaw, M., Pound, R., Kramer, L., Price, R., Young, S., Lewis, A. C., & Pope, F. D. (2018). Evaluation of a lowcost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmospheric Measurement Techniques, 11(2), 709–720.

    Article  Google Scholar 

  • European Union. (2008). Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union L 152, 1e44. https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050

  • Fischer, S. L., & Koshland, C. P. (2007). Field performance of a nephelometer in rural kitchens: Effects of high humidity excursions and correlations to gravimetric analyses. Journal of Exposure Science and Environmental Epidemiology, 17, 141–150.

    Article  CAS  Google Scholar 

  • Franck, U., Herbath, O., Roder, S., Schlink, U., Bote, M., Diez, U., Kramer, U., & Lehmann, I. (2011). Respiratory effects of indoor particles in young children are size dependent. Science of the Total Environment, 409, 1621–1631.

    Article  CAS  Google Scholar 

  • Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F., Westervelt, D. M., Beekmann, M., Subramanian, R. (2021). From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. Journal of Aerosol Science, 158, Article 105833 https://www.sciencedirect.com/science/article/pii/S0021850221005644

  • Gulliver, J., & Briggs, D. (2007). Journey-time exposure to particulate air pollution. Atmospheric Environment, 41, 7195–7207.

    Article  CAS  Google Scholar 

  • Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., & Morawska, L. (2018). The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech., 11, 4883–4890. https://doi.org/10.5194/amt-11-4883-2018

    Article  CAS  Google Scholar 

  • Jovasevic-Stojanovic, M., Bartonova, A., Topalovic, D., Lazovic, I., Pokric, B., & Ristovski, Z. (2015). On the use of small and cheaper sensors and devices for indicative citizen-based monitoring of respirable particulate matter. Environmental Pollution, 206, 696–704.

    Article  CAS  Google Scholar 

  • Keuken, M. P., Jonkers, S., Wilmink, I. R., & Wesseling, J. (2010a). Reduced NOx and PM10 emissions on urban motorways in The Netherlands by 80 km/h. Science of the Total Environment, 408, 2517–2526.

    Article  CAS  Google Scholar 

  • Keuken, M. P., Van der Gon, H. D., & Van der Valk, K. (2010b). Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands. Science of the Total Environment, 408, 4591–4599.

    Article  CAS  Google Scholar 

  • Kim, K. Y., Kim, Y. S., Roh, Y. M., Lee, C. M., & Kim, C. N. (2008). Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. Journal of Hazardous Materials, 154, 440–443.

    Article  CAS  Google Scholar 

  • Kovačević, R., Tasić, V., Živković, M., Živković, N., Đorđević, A., Manojlović, D., Jovašević-Stojanović, M. (2015). Mass concentrations and indoor-outdoor relationships of PM in selected educational buildings in Niš, Serbia, Chemical Industry & Chemical Engineering Quarterly, 21(1/II), 149–158 http://www.ache.org.rs/CICEQ/2015/No1/No01-II.html

  • Kuula, J., Makela, T., Aurela, M., Teinila, K., Varjonen, S., Gonzalez, O., & Timonen, H. (2020). Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmospheric Measurement Techniques, 13(5), 2413–2423.

    Article  CAS  Google Scholar 

  • Liu, H.Y., Schneider, P., Haugen, R., Vogt, M. (2019). Performance assessment of a low-cost PM2.5 sensor for a near four-month period in Oslo, Norway. Atmosphere, 10(2), Article 41 https://doi.org/10.3390/atmos10020041

  • Lifetek. (2021). https://www.glotechwll.com/AJR114DOWN/dowmload-file/LIFETEK-PMS.pdf Accessed 26 Jan 2022

  • Mishchenko, M. I. (2009). Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective. Journal of Quantitative Spectroscopy & Radiative Transfer, 110, 1210–1222.

    Article  CAS  Google Scholar 

  • Morawska, L., Ayoko, G. A., BaeM, G. N., Buonanno, M. G., et al. (2017). Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 108, 75–83.

    Article  CAS  Google Scholar 

  • NovaFitness. (2021). http://www.inovafitness.com/en/a/chanpinzhongxin/95.html Accessed 26 Jan 2022

  • Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. J Air & Waste Manage Assoc, 56, 709–742.

    Article  CAS  Google Scholar 

  • Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine, 360, 376–386.

    Article  CAS  Google Scholar 

  • Ramachandran, G., Adgate, J. L., Pratt, G. C., & Sexton, K. (2003). Characterizing indoor and outdoor 15-minute average PM2.5 concentrations in urban neighborhoods. Aerosol Science and Technology, 37, 33–45.

    Article  CAS  Google Scholar 

  • Schwartz, J. (2004). The effects of particulate air pollution on daily deaths: A multi-city case crossover analysis. Occupational and Environmental Medicine, 61, 956–961.

    Article  CAS  Google Scholar 

  • Sparkfun. (2021). https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf Accessed 26 Jan 2022

  • Tasic, V., Apostolovski-Trujic, T., Pavlov-Kagadejev, M., Spalovic, D., Miljkovic, V. (2018). Comparative measurements of the suspended particles (PM2.5) in the indoor air by using the low-cost sensors, Proceedings of the 50th International October Conference on Mining and Metallurgy, Bor Lake, Serbia, pp. 387–392, ISBN:(978–86–7827–050–5)

  • Tasić, V., Jovašević-Stojanović, M., Vardoulakis, S., Milošević, N., Kovačević, R., & Petrović, J. (2012). Comparative assessment of the real-time particle monitor against the reference gravimetric method for PM10 and PM2.5 in the indoor air. Atmospheric Environment, 54, 358–364. https://doi.org/10.1016/j.atmosenv.2012.02.030

    Article  CAS  Google Scholar 

  • Tasić, V., Maluckov, B., Apostolovski-Trujić, T., Kovačević, R., Živković, M., Lazović, I. (2015). Particulate matter (PM10 and PM2.5) concentrations in naturally ventilated offices in Bor, Serbia, Facta Universitatis, Series: Working and Living Environmental Protection 12(3), 279–288

  • Tasić, V., Milošević, N., Kovačević, R., & Petrović, N. (2010). Analysis of air pollution caused by particle matter emission from the copper smelter complex Bor (Serbia). Chemical Industry & Chemical Engineering Quarterly, 16(3), 219–228.

    Article  Google Scholar 

  • Venkatraman, J.J., Klausnitzer, A., Chacón-Mateos, M., Laquai, B., Nieuwkoop, E., van der Mark, P., Vogt, U., Schneider, C. (2021). Calibration method for particulate matter low-cost sensors used in ambient air quality monitoring and research. Sensors 21, Article 3960. https://doi.org/10.3390/s21123960

  • Wallace, L. (2006). Indoor sources of ultrafine and accumulation mode particles: Size distributions, size-resolved concentrations and source strengths. Aerosol Science and Technology, 40, 348–360.

    Article  CAS  Google Scholar 

  • Wallace, L. A., Wheeler, A. J., Kearney, J., Ryswyk, K., You, H., Kulka, R. H., Rasmussen, P. E., Brook, J. R., & Xu, X. (2011). Validation of continuous particle monitors for personal, indoor, and outdoor exposures. Journal of Exposure Science and Environmental Epidemiology, 21, 49–64.

    Article  CAS  Google Scholar 

  • Wallace, L., Bi, J., Ott, W.R., Sarnat, J., Liud, Y. (2021). Calibration of low-cost PurpleAir outdoor monitors using an improved method of calculating PM2.5. Atmos Environ, 256, Article 118432 https://doi.org/10.1016/j.atmosenv.2021.118432

  • WHO. (2020). Outdoor air pollution a leading environmental cause of cancer deaths. http://www.euro.who.int/en/health-topics/environment-and-health/urban-health/news/news/2013/10/outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths Accessed January 26, 2022

  • Wu, D., Zhang, G., Liu, J., Shen, S., Yang, Z., Pan, J., Zhao, X., Yang, S., Tian, Y., Zhao, H., Li, J., Cai, L. (2022). Influence of particle properties and environmental factors on the performance of typical particle monitors and low-cost particle sensors in the market of China. Atmospheric Environment, 268, Article 118825 https://doi.org/10.1016/j.atmosenv.2021.118825

  • Zamora, M.L., Rice, J., Koehler, K. (2020), One year evaluation of three low-cost PM2.5 monitors. Atmospheric Environment, 235, Article 117615 https://doi.org/10.1016/j.atmosenv.2020.117615

Download references

Funding

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, (Grant No. 451–03-68/2022–14/ 200052, 451–03-9/2021–14/200148, and 451–03-9/2021–14/ 200017).

Author information

Authors and Affiliations

Authors

Contributions

AB: conceptualization, investigation, data collection, writing — original draft, lead author. VT: data collection, gravimetric analysis lead, writing — original draft. NŽ: study planning, data curation, formal analysis. IL: data collection, instrument preparation and operation. MB: data collection, writing — review and editing. NM: data collection, methodology. DT: data collection, formal analysis, visualization.

Corresponding author

Correspondence to Viša Tasić.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Božilov, A., Tasić, V., Živković, N. et al. Performance assessment of NOVA SDS011 low-cost PM sensor in various microenvironments. Environ Monit Assess 194, 595 (2022). https://doi.org/10.1007/s10661-022-10290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10290-7

Keywords

Navigation