Skip to main content

Advertisement

Log in

Bromide occurrence in Croatian groundwater and application of literature models for bromate formation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Bromide in water can form undesirable by-products such as bromate when treated by ozonation during drinking water production. The maximum contaminant level (MCL) for bromate is 10 µg/L in most countries because it is suspected of being carcinogenic. In this paper, the geographical distribution of bromide concentration in Croatian groundwater is presented covering the Pannonian basin and the Dinarides (Adriatic Sea). Groundwater in Croatian wellfields predominantly has a bromide content of less than 50 µg/L and thus belongs to the group with low potential for bromate formation. Waters with higher bromide concentrations were found mainly in the coastal regions of Croatia, probably due to seawater intrusion. In addition, bromide concentration showed a positive correlation of 0.6 with conductivity, chloride, and sodium. In addition, the potential of 123 groundwaters analyzed in this study to form bromate when treated with ozone was evaluated using models available in the literature. Analysis of water from Croatian wellfields indicated that the potential for bromate formation above the MCL during ozonation was relatively low. The models used from the literature predicted quite different values of bromate concentration when applied to the same water, with some values exceeding those theoretically possible. Selected models may be useful as a general warning of possible bromate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to controlled access repository of Department for Water Safety and Water Supply, Croatian Institute of Public Health, and are available from the corresponding author upon reasonable request.

References

  • Biondić, B., Biondić, R., & Dukarić, F. (1998). Protection of karst aquifers in the Dinarides in Croatia. Environmental Geology, 34(4), 309–319. https://doi.org/10.1007/s002540050283

    Article  Google Scholar 

  • DeAngelo, A. B., George, M. H., Kilburn, S. R., Moore, T. M., & Wolf, D. C. (1998). Carcinogenicity of potassium bromate administered in the drinking water to male B6C3F1 mice and F344/N rats. Toxicologic Pathology, 26(5), 587–594. https://doi.org/10.1177/019262339802600501

    Article  CAS  Google Scholar 

  • Degremont. (2007). Water treatment handbook (7th ed.). Lavoisier.

  • El Araby, R., Hawash, S., & El Diwani, G. (2009). Treatment of iron and manganese in simulated groundwater via ozone technology. Desalination, 249(3), 1345–1349. https://doi.org/10.1016/j.desal.2009.05.006

    Article  CAS  Google Scholar 

  • Gillogly, T., Najm, I., Minear, R., Marinas, B., Urban, M., Kim, J. H., Echigo, S., Amy, G., Douville, C., Daw, B., Andrews, R., Hofmann, R., & Croue, J.-P. (2001). Bromate formation and control during ozonation of low bromide waters. AWWA Research Foundation and American Water Works Association.

  • Hansen, B., Dalgaard, T., Thorling, L., Sørensen, B., & Erlandsen, M. (2012). Regional analysis of groundwater nitrate concentrations and trends in Denmark in regard to agricultural influence. Biogeosciences, 9(8), 3277–3286. https://doi.org/10.5194/bg-9-3277-2012

    Article  CAS  Google Scholar 

  • Hu, J. Y., Wang, Z. S., Ng, W. J., & Ong, S. L. (1999). Disinfection by-products in water produced by ozonation and chlorination. Environmental Monitoring and Assessment, 59(1), 81–93. https://doi.org/10.1023/A:1006076204603

    Article  CAS  Google Scholar 

  • Hudak, P. F. (2018). Spatial and temporal trends of nitrate, chloride, and bromide concentration in an alluvial aquifer, North-Central Texas, USA. Environmental Quality Management, 27(4), 79–86. https://doi.org/10.1002/tqem.21553

    Article  Google Scholar 

  • Jarvis, P., Parsons, S. A., & Smith, R. (2007). Modeling bromate formation during ozonation. Ozone: Science and Engineering, 29(6), 429–442. https://doi.org/10.1080/01919510701643732

  • Jiao, J. J., Wang, Y., Cherry, J. A., Wang, X., Zhi, B., Du, H., & Wen, D. (2010). Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the pearl river delta. China. Environmental Science and Technology, 44(19), 7470–7475. https://doi.org/10.1021/es1021697

    Article  CAS  Google Scholar 

  • Kolb, C., Pozzi, M., Samaras, C., & VanBriesen, J. M. (2017). Climate Change Impacts on Bromide, Trihalomethane Formation, and Health Risks at Coastal Groundwater Utilities. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(3), 04017006. https://doi.org/10.1061/AJRUA6.0000904

  • Krasner, S. W., Glaze, W. H., Weinberg, H. S., Daniel, P. A., & Najm, I. N. (1993). Formation and control of bromate during ozonation of waters containing bromide. Journal / American Water Works Association, 85(1), 73–81. https://doi.org/10.1002/j.1551-8833.1993.tb05923.x

    Article  CAS  Google Scholar 

  • Magazinovic, R. S., Nicholson, B. C., Mulcahy, D. E., & Davey, D. E. (2004). Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment. Chemosphere, 57(4), 329–335. https://doi.org/10.1016/j.chemosphere.2004.04.056

    Article  CAS  Google Scholar 

  • Mandilaras, D., Lambrakis, N., & Stamatis, G. (2008). The role of bromide and iodide ions in the salinization mapping of the aquifer of Glafkos River basin (northwest Achaia, Greece). Hydrological Processes, 22(5), 611–622. https://doi.org/10.1002/hyp.6627

    Article  CAS  Google Scholar 

  • Melo, A., Pinto, E., Aguiar, A., Mansilha, C., Pinho, O., & Ferreira, I. M. P. L. V. O. (2012). Impact of intensive horticulture practices on groundwater content of nitrates, sodium, potassium, and pesticides. Environmental Monitoring and Assessment, 184(7), 4539–4551. https://doi.org/10.1007/s10661-011-2283-4

    Article  CAS  Google Scholar 

  • Milosevic, N., Thomsen, N. I., Juhler, R. K., Albrechtsen, H. J., & Bjerg, P. L. (2012). Identification of discharge zones and quantification of contaminant mass discharges into a local stream from a landfill in a heterogeneous geologic setting. Journal of Hydrology, 446–447, 13–23. https://doi.org/10.1016/j.jhydrol.2012.04.012

    Article  CAS  Google Scholar 

  • Moratalla, A., Gómez-Alday, J. J., & De las Heras, J., Sanz, D., & Castaño, S. (2009). Nitrate in the water-supply wells in the mancha orental hydrogeological system (SE Spain). Water Resources Management, 23(8), 1621–1640. https://doi.org/10.1007/s11269-008-9344-7

    Article  Google Scholar 

  • Moslemi, M. (2011). Formation of bromate and other brominated disinfection byproducts during the treatment of waters using a hybrid ozonation-membrane filtration system [McMaster University]. https://macsphere.mcmaster.ca/handle/11375/11269

  • Motz, L. H., Kurki-Fox, J., Ged, E. C., & Boyer, T. H. (2014). Increased total dissolved solids, chloride, and bromide concentrations due to sea-level rise in a coastal aquifer. World Environmental and Water Resources Congress 2014: Water Without Borders - Proceedings of the 2014 World Environmental and Water Resources Congress, 272–281. https://doi.org/10.1061/9780784413548.030

  • Mrazovac, S., Vojinović-Miloradov, M., Matić, I., & Marić, N. (2013). Multivariate statistical analyzing of chemical parameters of groundwater in Vojvodina. Chemie Der Erde, 73(2), 217–225. https://doi.org/10.1016/j.chemer.2012.11.002

    Article  CAS  Google Scholar 

  • Myllykangas, T., Nissinen, T., & Vartiainen, T. (2000). Bromate formation during ozonation of bromide containing drinking water - A pilot scale study. Ozone: Science and Engineering, 22(5), 487–499. https://doi.org/10.1080/01919510009408792

  • Ordinance on (Pravilnik O Parametrima Sukladnosti Metodama Analize Monitoringu I Planovima Sigurnosti Vode Za Ljudsku Potrošnju Te Načinu Vođenja Registra Pravnih Osoba Koje Obavljaju Djelatnost Javne Vodoopskrbe Narodne Novine 125 2017), (2017).

  • Ozekin, K., & Amy, G. L. (1997). Threshold levels for bromate formation in drinking water. Ozone: Science and Engineering, 19(4), 323–337. https://doi.org/10.1080/01919519708547296

  • Peh, Z., Šorša, A., & Halamić, J. (2010). Composition and variation of major and trace elements in Croatian bottled waters. Journal of Geochemical Exploration, 107(3), 227–237. https://doi.org/10.1016/j.gexplo.2010.02.002

    Article  CAS  Google Scholar 

  • Pinkernell, U., & von Gunten, U. (2001). Bromate minimization during ozonation: Mechanistic considerations. Environmental Science and Technology, 35(12), 2525–2531. https://doi.org/10.1021/es001502f

    Article  CAS  Google Scholar 

  • Rakness, K. L. (2005). Ozone in drinking water treatment: Process design, operation and optimization. American Water Works Association.

  • Shand, P., & Edmunds, W. M. (2008). The baseline inorganic chemistry of european groundwaters. In W. M. Edmunds & P. Shand (Eds.), Natural Groundwater Quality (pp. 22–57). https://doi.org/10.1002/9781444300345

  • Siddiqui, M. S., Amy, G. L., & Rice, R. G. (1995). Bromate ion formation: A critical review. Journal - American Water Works Association, 87(10), 58–70. https://doi.org/10.1002/j.1551-8833.1995.tb06435.x

    Article  CAS  Google Scholar 

  • Siddiqui, M. S., Amy, G., Ozekin, K., & Westerhoff, P. (1998). Modeling dissolved ozone and bromate ion formation in ozone contactors. Water, Air, and Soil Pollution, 108(1–2), 1–32. https://doi.org/10.1023/A:1005025115868

    Article  CAS  Google Scholar 

  • Sohn, J., Amy, G., Cho, J., Lee, Y., & Yoon, Y. (2004). Disinfectant decay and disinfection by-products formation model development: Chlorination and ozonation by-products. Water Research, 38(10), 2461–2478. https://doi.org/10.1016/j.watres.2004.03.009

    Article  CAS  Google Scholar 

  • Song, R., Donohoe, C., Minear, R., Westerhoff, P., Ozekin, K., & Amy, G. (1996). Empirical modeling of bromate formation during ozonation of bromide-containing waters. Water Research, 30(5), 1161–1168. https://doi.org/10.1016/0043-1354(95)00302-9

    Article  CAS  Google Scholar 

  • Storlie, L. L. (2013). An investigation into bromate formation in ozone disinfection systems [North Dakota State University]. https://search-proquest-com.unr.idm.oclc.org/docview/1356706844?pq-origsite=summon&accountid=452

  • Thurman, E. M. (1985). Amount of organic carbon in natural waters. In Organic geochemistry of natural waters (pp. 7–65). Springer Netherlands. https://doi.org/10.1007/978-94-009-5095-5_2

  • Tynan, P. J., Lunt, D. O., & Hutchison, J. (1993). The formation of bromate during drinking water disinfection.

  • Tyrovola, K., & Diamadopoulos, E. (2005). Bromate formation during ozonation of groundwater in coastal areas in Greece. Desalination, 176(1–3 SPEC. ISS.), 201–209. https://doi.org/10.1016/j.desal.2004.10.018

  • USEPA. (2020). Disinfection profiling and benchmarking technical guidance manual. U.S. Epa.

  • Vetrimurugan, E., Elango, L., & Rajmohan, N. (2013). Sources of contaminants and groundwater quality in the coastal part of a river delta. International Journal of Environmental Science and Technology, 10(3), 473–486. https://doi.org/10.1007/s13762-012-0138-3

    Article  CAS  Google Scholar 

  • von Gunten, U. (2003). Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research, 37(7), 1469–1487. https://doi.org/10.1016/S0043-1354(02)00458-X

  • WHO. (2017). Drinking water parameter cooperation project. Support to the revision of Annex I Council Directive 98/83/EC on the quality of water intended for human consumption (Drinking Water Directive) recommendations (Issue September). http://ec.europa.eu/environment/water/water-drink/pdf/20171215_EC_project_report_final_corrected.pdf

  • WHO. (2018). Alternative drinking-water disinfectants: Bromine, iodine and silver.

  • Xie, L., & Shang, C. (2006). A review on bromate occurrence and removal strategies in water supply. In Water Science and Technology: Water Supply, 6(6), 131–136. https://doi.org/10.2166/ws.2006.960

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Ćurko.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregov, M., Jukić, A., Ćurko, J. et al. Bromide occurrence in Croatian groundwater and application of literature models for bromate formation. Environ Monit Assess 194, 544 (2022). https://doi.org/10.1007/s10661-022-10240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10240-3

Keywords

Navigation