Skip to main content

Advertisement

Log in

Assessing the effect of sustainable land management on improving water security in the Blue Nile Highlands: a paired catchment approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Blue Nile Highlands, Ethiopia, has been experiencing serious land degradation, menacing water security, and then human well-being. However, sustainable land management (SLM) may be the way to curb land degradation and improve water security. Therefore, in order to assess benefits after a 5-year catchment restoration effort, we conducted a paired-catchment study to investigate runoff and soil moisture dynamics. First and second catchments were used as control and treated, respectively. After comparing observations gathered from four sites within each of the study catchments, we found that implementing SLM reduced runoff curve numbers by −13.9 to −21.6 units and increased soil moisture storage by 15.6 to 800%, then promoting rapid recovery of the hydrologic functionality of the natural landscapes. We conclude that SLM initiatives can greatly improve water security in the drought-prone Blue Nile Highlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Data are available in ORA (Oxford University Archive) at the University of Oxford’s digital repository.

References

  • Abera, W., Tamene, L., Tibebe, D., Adimassu, Z., Kassa, H., Hailu, H., Mekonnen, K., Desta, G., Sommer, R., & Verchot, L. (2020). Characterizing and evaluating the impacts of national land restoration initiatives on ecosystem services in Ethiopia. Land Degradation and Development, 31(1), 37–52. https://doi.org/10.1002/ldr.3424

    Article  Google Scholar 

  • Akale, A. T., Dagnew, D. C., Moges, M. A., Tilahun, S. A., & Steenhuis, T. S. (2019). The effect of landscape interventions on groundwater flow and surface runoff in a watershed in the upper reaches of the Blue Nile. Water (Switzerland), 11(10). https://doi.org/10.3390/w11102188

  • Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/j.wace.2017.12.002

    Article  Google Scholar 

  • Berhane, F., Zaitchik, B., & Dezfuli, A. (2014). Subseasonal analysis of precipitation variability in the Blue Nile River Basin. Journal of Climate, 27(1), 325–344. https://doi.org/10.1175/JCLI-D-13-00094.1

    Article  Google Scholar 

  • Betrie, G. D., Mohamed, Y. A., Van Griensven, A., & Srinivasan, R. (2011). Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences, 15(3), 807–818. https://doi.org/10.5194/hess-15-807-2011

    Article  Google Scholar 

  • Bewket, W., & Sterk, G. (2005). Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin Ethiopia. Hydrological Processes, 19(2), 445–458. https://doi.org/10.1002/hyp.5542

    Article  Google Scholar 

  • Bonta, J. V., & Shipitalo, M. J. (2013). Curve numbers for long-term no-till corn and agricultural practices with high watershed infltration. Journal of Soil and Water Conservation, 68(6), 487–500. https://doi.org/10.2489/jswc.68.6.487. Accessed 21 July 2018.

    Article  Google Scholar 

  • Bonta, J. V. (2013). Managing landscape disturbances to increase watershed infiltration. Transactions of the ASABE, 56(4), 1349–1359. www.unh.edu/unhsc

  • Conway, D. (2000). The climate and hydrology of the Upper Blue Nile River. The Geographical Journal, 166(1), 49–62.

    Article  Google Scholar 

  • Conway, D., & Schipper, E. L. F. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change, 21(1), 227–237. https://doi.org/10.1016/j.gloenvcha.2010.07.013

    Article  Google Scholar 

  • Dabney, S. M., Wilson, G. V., McGregor, K. C., & Vieira, D. A. N. (2012). Runoff through and upslope of contour switchgrass hedges. Soil Science Society of America Journal, 76(1), 210–219. https://doi.org/10.2136/sssaj2011.0019

    Article  CAS  Google Scholar 

  • Delta-T Devices Ltd. (2016). User manual for the SDI-12 profile probe type SDI PR2/4 and SDI PR2/6. www.delta-t.co.uk. Accessed 21 July 2018.

  • Descheemaeker, K., Nyssen, J., Poesen, J., Raes, D., Haile, M., Muys, B., & Deckers, S. (2006). Runoff on slopes with restoring vegetation: A case study from the Tigray highlands Ethiopia. Journal of Hydrology, 331(1–2), 219–241. https://doi.org/10.1016/j.jhydrol.2006.05.015

    Article  Google Scholar 

  • Dile, Y. T., Berndtsson, R., & Setegn, S. G. (2013). Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0079296

  • Dile, Y. T., Tekleab, S., Kaba, E. A., Gebrehiwot, S. G., Worqlul, A. W., Bayabil, H. K., Yimam, Y. T., Tilahun, S. A., Daggupati, P., Karlberg, L., & Srinivasan, R. (2018). Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. Journal of Hydrology, 560, 407–423. https://doi.org/10.1016/j.jhydrol.2018.03.042

    Article  CAS  Google Scholar 

  • Elhakeem, M., & Papanicolaou, A. N. (2009). Estimation of the runoff curve number via direct rainfall simulator measurements in the state of Iowa, USA. Water Resources Management, 23(12), 2455–2473. https://doi.org/10.1007/s11269-008-9390-1

    Article  Google Scholar 

  • Elshamy, M. E., Seierstad, I. A., & Sorteberg, A. (2009). Hydrology and Earth system sciences impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrology and Earth System Sciences, 13, 551–565. www.hydrol-earth-syst-sci.net/13/551/2009/. Accessed 21 July 2018.

  • Feyereisen, G. W., Strickland, T. C., Bosch, D. D., Truman, C. C., Sheridan, J. M., & Potter, T. L. (2008). Curve number estimates for conventional and conservation tillages in the southeastern Coastal Plain. Journal of Soil and Water Conservation, 63(3), 120–128.

    Article  Google Scholar 

  • Gumma, M. K., Desta, G., Amede, T., Panjala, P., Smith, A. P., Kassawmar, T., Tummala, K., Zeleke, G., & Whitbread, A. M. (2021). Assessing the impacts of watershed interventions using ground data and remote sensing: A case study in Ethiopia. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03192-7

    Article  Google Scholar 

  • Hajabbasi, M. A., Jalalian, A., & Karimzadeh, H. R. (1997). Deforestation effects on soil physical and chemical properties, lordegan, iran. Plant and Soil, 190(2), 301–308. https://doi.org/10.1023/A:1004243702208

    Article  CAS  Google Scholar 

  • Haregeweyn, N., Berhe, A., Tsunekawa, A., Tsubo, M., & Meshesha, D. T. (2012). Integrated watershed management as an effective approach to curb land degradation: A case study of the enabered watershed in northern Ethiopia. Environmental Management, 50(6), 1219–1233. https://doi.org/10.1007/s00267-012-9952-0

    Article  Google Scholar 

  • Haregeweyn, N., Tsunekawa, A., Poesen, J., Tsubo, M., Meshesha, D. T., Fenta, A. A., Nyssen, J., & Adgo, E. (2017). Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the Upper Blue Nile River. Science of the Total Environment, 574, 95–108. https://doi.org/10.1016/j.scitotenv.2016.09.019

    Article  CAS  Google Scholar 

  • Hawkins, R. (1993). Asymptotic determination of runoff curve numbers from data. Journal of Irrigation and Drainage Engineering, 119, 334–345.

    Article  Google Scholar 

  • Hurni, H., Tato, K., & Zeleke, G. (2005). The implications of changes in population, land use, and land management for surface runoff in the Upper Nile Basin area of Ethiopia. Mountain Research and Development, 25(2), 147–154. https://doi.org/10.1659/0276-4741(2005)025[0147:tiocip]2.0.co;2

    Article  Google Scholar 

  • Kirui, O. K., Mirzabaev, A., & von Braun, J. (2021). Assessment of land degradation ‘on the ground’ and from ‘above.’ SN Applied Sciences, 3(3). https://doi.org/10.1007/s42452-021-04314-z

  • Lebel, S., Fleskens, L., Forster, P. M., Jackson, L. S., & Lorenz, S. (2015). Evaluation of In situ rainwater harvesting as an adaptation strategy to climate change for maize production in rainfed Africa. Water Resources Management, 29(13), 4803–4816. https://doi.org/10.1007/s11269-015-1091-y

    Article  Google Scholar 

  • Motulsky, H., & Christopoulos, A. (2003). Fitting curves with GraphPad Prism. In Fitting Models to Biological Data Using Linear and Nonlinear Regression.

  • Nyssen, J., Clymans, W., Descheemaeker, K., Poesen, J., Vandecasteele, I., Vanmaercke, M., Zenebe, A., Van Camp, M., Haile, M., Haregeweyn, N., Moeyersons, J., Martens, K., Gebreyohannes, T., Deckers, J., & Walraevens, K. (2010). Impact of soil and water conservation measures on catchment hydrological response-a case in north Ethiopia. Hydrological Processes, 24(13), 1880–1895. https://doi.org/10.1002/hyp.7628

    Article  Google Scholar 

  • Oliveira, P. T. S., Nearing, M. A., Hawkins, R. H., Stone, J. J., Rodrigues, D. B. B., Panachuki, E., & Wendland, E. (2016). Curve number estimation from Brazilian Cerrado rainfall and runoff data. Journal of Soil and Water Conservation, 71(5), 420–429. https://doi.org/10.2489/jswc.71.5.420

    Article  Google Scholar 

  • Rientjes, T. H. M., Haile, A. T., Kebede, E., Mannaerts, C. M. M., Habib, E., & Steenhuis, T. S. (2011). Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin - Ethiopia. Hydrology and Earth System Sciences, 15(6), 1979–1989. https://doi.org/10.5194/hess-15-1979-2011

    Article  Google Scholar 

  • Rockström, J., Karlberg, L., Wani, S. P., Barron, J., Hatibu, N., Oweis, T., Bruggeman, A., Farahani, J., & Qiang, Z. (2010). Managing water in rainfed agriculture-the need for a paradigm shift. Agricultural Water Management, 97(4), 543–550. https://doi.org/10.1016/j.agwat.2009.09.009

    Article  Google Scholar 

  • Rockström, J., Lannerstad, M., & Falkenmark, M. (2007). Assessing the water challenge of a new green revolution in developing countries. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6253–6260. https://doi.org/10.1073/pnas.0605739104

    Article  CAS  Google Scholar 

  • Setegn, S. G., Rayner, D., Melesse, A. M., Dargahi, B., & Srinivasan, R. (2011). Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resources Research, 47(4). https://doi.org/10.1029/2010WR009248

  • Simane, B., Zaitchik, B. F., & Foltz, J. D. (2016). Agroecosystem specific climate vulnerability analysis: Application of the livelihood vulnerability index to a tropical highland region. Mitigation and Adaptation Strategies for Global Change, 21(1), 39–65. https://doi.org/10.1007/s11027-014-9568-1

    Article  Google Scholar 

  • Tabari, H., Taye, M. T., & Willems, P. (2015). Statistical assessment of precipitation trends in the upper Blue Nile River basin. Stochastic Environmental Research and Risk Assessment, 29(7), 1751–1761. https://doi.org/10.1007/s00477-015-1046-0

    Article  Google Scholar 

  • Tedela, N. H., Mccutcheon, S. C., Asce, M., Rasmussen, T. C., Hawkins, R. H., Asce, F., Swank, W. T., Campbell, J. L., Adams, M. B., Jackson, C. R., & Tollner, E. W. (2012). Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States. https://doi.org/10.1061/(ASCE)HE

  • USDA-NRCS. (2004). Estimation of direct runoff from storm rainfall. Chapter 10, Part 630, Hydrology. National Engineering Handbook, Title 210. Washington, DC: USDA.

  • Verhoeven, H. (2013). The politics of African energy development: Ethiopia’s hydro-agricultural state-building strategy and clashing paradigms of water security. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2002). https://doi.org/10.1098/rsta.2012.0411

  • Vörösmarty, C. J., Douglas, E. M., Green, P. A., & Revenga, C. (2005). Geospatial indicators of emerging water stress: An application to Africa. Ambio, 34(3), 230–236. https://doi.org/10.1579/0044-7447-34.3.230

    Article  Google Scholar 

  • Wagesho, N., Goel, N. K., & Jain, M. K. (2013). Variabilité temporelle et spatiale des précipitations annuelles et saisonnières sur l’Ethiopie. Hydrological Sciences Journal, 58(2), 354–373. https://doi.org/10.1080/02626667.2012.754543

    Article  Google Scholar 

  • Yuan, Y., Mitchell, J. K., Hirschi, M. C., & Cooke, R. A. C. (2001). Modified SCS curve number method for predicting subsurface drainage flow. Transactions of the American Society of Agricultural Engineers, 44(6), 1673–1682. https://doi.org/10.13031/2013.7028

Download references

Acknowledgements

This document is an output from the REACH program funded by UK Aid from the UK Foreign, Commonwealth and Development Office (FCDO) for the benefit of developing countries (Program Code 201880). However, the views expressed and information contained in it are not necessarily those of or endorsed by FCDO, which can accept no responsibility for such views or information or for any reliance placed on them.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Berihun D. Mersha, Gete Zeleke, Tena Alamirew, Zeleke A. Dejen, and Solomon G. Gebrehiwot. The first draft of the manuscript was written by Berihun D. Mersha, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Berihun D. Mersha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Land degradation and climate variability and change are major threats to water security in Ethiopia.

• SLM interventions are capable of restoring the natural hydrologic functionality of the agricultural landscapes in the Blue Nile Highlands.

• SLM interventions help reduce nonproductive freshwater losses in the agricultural landscapes of the Blue Nile Highlands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mersha, B.D., Zeleke, G., Alamirew, T. et al. Assessing the effect of sustainable land management on improving water security in the Blue Nile Highlands: a paired catchment approach. Environ Monit Assess 194, 197 (2022). https://doi.org/10.1007/s10661-022-09837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09837-5

Keywords

Navigation