Skip to main content

Advertisement

Log in

Assessment of potential variability of cadmium and copper trace metals using hindcast estimates

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Trace metals are vital to primary productivity and play an essential role as main components in regulating oceanic biogeochemical cycles. Dissolved and particulate trace metals within the water column may vary due to primary production, temperature, and nutrient changes, factors that may also vary spatially and temporally. Furthermore, assessment of trace metals mainly relies on in situ observation, and so wide-area investigation of trace-metal concentration may be challenging and subject to technical constraints. A specific approach is therefore necessary that combines biogeochemical proxies, satellite data, and trace-metal linear correlation. This study aims to assess the potential spatio-temporal variability of sea surface cadmium (Cd) and copper (Cu) concentrations in Indonesian seas and surrounding areas. The correlations of Cd and Cu concentrations with primary production and nutrient data were used to convert hindcast satellite data into estimates of the metals’ concentrations. The potential variability of trace metals can be determined by overlaying both data. Indonesia’s Fisheries Management Areas (FMAs) were used for data clustering and analysis. The results show that Cd and Cu trace metals have similar distribution patterns throughout the year. However, dissolved Cu has a more diverse coverage area than dissolved Cd, including within the Halmahera, Seram, and Maluku Seas (FMAs 716 and 717), the Makassar Strait (FMA 717), and the Java–Sumatra upwelling area (FMA 573). Both Cd and Cu concentrations in the Java–Sumatra upwelling region follow the periodic upwelling pattern. Overall, both Cd and Cu show a declining trend in concentration from 2012 to 2019. It is estimated that dissolved Cd concentration declined from 1500–2000 pmol/kg in 2012 to 1000–1500 pmol/kg in 2019 for all locations. Dissolved Cu concentration decreased from 30–35 nmol/kg in 2012 to 25–30 nmol/kg in 2019. Estimated dissolved Cd and Cu follow the linear functions of silicate (SiO4), nitrate (NO3), and primary productivity. The fluctuation of anthropogenic activities and global warming are likely to indirectly impact the decline in metal concentrations by affecting nutrients and primary productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Code sharing is not applicable for this article as no codes were generated or analyzed during the study.

References

  • Abollino, O., Aceto, M., La Gioia, C., Sarzanini, C., & Mentasti, E. (2001). Spatial and seasonal variations of major, minor, and trace elements in Antarctic Seawater: Chemometric investigation of variable and site correlations. Advances in Environmental Research, 6(1), 29–43. https://doi.org/10.1016/S1093-0191(00)00068-X

    Article  CAS  Google Scholar 

  • Adiana, G., Shazili, N. A. M., Marinah, M. A., & Bidai, J. (2014). Effects of northeast monsoon on trace metal distribution in the South China Sea off Peninsular Malaysia. Environmental Monitoring and Assessment, 186(1), 421–431. https://doi.org/10.1007/s10661-013-3387-9

    Article  CAS  Google Scholar 

  • Alongi, D. M., Wirasantosa, S., Wagey, T., & Trott, L. A. (2012). Early diagenetic processes in relation to river discharge and coastal upwelling in the Aru Sea, Indonesia. Marine Chemistry, 140–141, 10–23. https://doi.org/10.1016/j.marchem.2012.06.002

    Article  CAS  Google Scholar 

  • Andrew-Priestley, M. N., O’Connor, W. A., Dunstan, R. H., & MacFarlane, G. R. (2020). An impact-control study to assess the potential accumulation of metals and metalloids from sewage effluent and biosolids to Sydney rock oysters, Saccostrea glomerata. Water, Air, and Soil Pollution, 231(5). https://doi.org/10.1007/S11270-020-04570-6

  • Annabi-Trabelsi, N., Guermazi, W., Karam, Q., Ali, M., Uddin, S., Leignel, V., & Ayadi, H. (2021). Concentration of trace metals in phytoplankton and zooplankton in the Gulf of Gabés. Tunisia. Marine Pollution Bulletin, 168, 112392. https://doi.org/10.1016/j.marpolbul.2021.112392

    Article  CAS  Google Scholar 

  • Apte, S. C., & Day, G. M. (1998). Dissolved metal concentrations in the Torres Strait and Gulf of Papua. Marine Pollution Bulletin, 36(4), 298–304. https://doi.org/10.1016/S0025-326X(98)00188-X

    Article  CAS  Google Scholar 

  • Arikibe, J. E, & Prasad, S. (2020). Determination and comparison of selected heavy metal concentrations in seawater and sediment samples in the coastal area of Suva, Fiji. Marine Pollution Bulletin, 157, 111157. https://doi.org/10.1016/j.marpolbul.2020.111157

  • Azevedo, A., Malm, O., & Bisi, T. (2021). An upwelling area as a hotSpot for mercury biomonitoring in a climate change scenario : A case study with large demersal fishes from Southeast Atlantic (SE-Brazil). Chemosphere, 269, 128918. https://doi.org/10.1016/j.chemosphere.2020.128718

    Article  CAS  Google Scholar 

  • Bass, J. A. B., Blust, R. J., Clarke, R. T., Corbin, T. A, Davison, W., De Schamphelaere, K. A. C., Janssen, C. R., Kalis, E. J. J., Kelly, M. G., Kneebone, N. T., Lawlor, A. J., Lofts, S., Temminghoff, E. J. M., Thacker, S. A., Tipping, E., Vincent, C. D., Warnken, K. W., & Zhang, H. (2008). Environmental quality standards for trace metals in the aquatic environment. Bristol, Environment Agency, 177. (Science Report – SC030194)

  • Balch, W. M., Gordon, H. R., Bowler, B. C., Drapeau, D. T., & Booth, E. S. (2005). Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. Journal of Geophysical Research: Oceans, 110(C7), 1–21. https://doi.org/10.1029/2004JC002560

    Article  CAS  Google Scholar 

  • Batley, G. E., & Gardner, D. (1977). Sampling and storage of natural waters for trace metal analysis. Water Research, 11(9), 745–756. https://doi.org/10.1016/0043-1354(77)90042-2

    Article  CAS  Google Scholar 

  • Baumgart, A., Jennerjahn, T., Mohtadi, M., & Hebbeln, D. (2010). Distribution and burial of organic carbon in sediments from the Indian Ocean upwelling region off Java and Sumatra, Indonesia. Deep-Sea Research Part I: Oceanographic Research Papers, 57(3), 458–467. https://doi.org/10.1016/j.dsr.2009.12.002

    Article  CAS  Google Scholar 

  • Behrenfeld, M. J. (2001). Biospheric primary production during an ENSO transition. Science, 291(5513), 2594–2597. https://doi.org/10.1126/science.1055071

    Article  CAS  Google Scholar 

  • Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., & Vichi, M. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10(10), 6225–6245. https://doi.org/10.5194/bg-10-6225-2013

    Article  Google Scholar 

  • Brown, M. T., Chappell, P. D., Duckham, C., & Fitzsimmons, J. N. (2018). The biogeochemical cycling of iron, copper, nickel, cadmium, manganese, cobalt, lead, and scandium in a California current experimental study. Limnology and Oceanography, 63(S1), S425-447. https://doi.org/10.1002/lno.10751

    Article  CAS  Google Scholar 

  • Brye, B. D., Schellen, S., Sassi, M., Vermeulen, B., Kärnä, T., Deleersnijder, E., & Hoitink, T. (2011). Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dynamics, 61, 1107–1120. https://doi.org/10.1007/s10236-011-0410-y

    Article  Google Scholar 

  • Budiyanto, F., & Lestari. (2015). Pengaruh kegiatan antropogenik terhadap konsentrasi logam berat terlarut di perairan Dalam Fahmi dan Setyono D.E.D (Editor), LIPI Press Jakarta, 1- 100. (In Bahasa Indonesia)

  • Budiyanto F. (2016). Distribusi logam berat dalam sedimen di perairan Lombok Barat In Puspitasari R., dan Natsir S. M. (Editor) Kualitas lingkungan untuk menunjang budidaya biota laut di perairan Lombok Barat, LIPI Press Jakarta, pp 65–80 (In Bahasa Indonesia)

  • Budiyanto, F., Lestari, Rositasari, R., & Puspitasari, R. (2018). Vertical distribution of heavy metals in coastal sediment: A record of the changing input in the Estuarine of the Semarang Flood Canal. Bulletin of the Marine Geology, 33(1), 29–40. https://doi.org/10.32693/bomg.33.1.2018.408

  • Budiyanto, F., & Lestari, L. (2019). Assessing heavy metals contamination in suspended particulate matter in Jakarta Bay, Indonesia. Bulletin of the Marine Geology, 34(2), 77–88. https://doi.org/10.32693/bomg.34.2.2019.597

  • Burger, J. M., Moloney, C. L., Walker, D. R., Parrott, R. G., & Fawcett, S. E. (2020). Drivers of short-term variability in phytoplankton production in an embayment of the Southern Benguela upwelling system. Journal of Marine Systems, 208, 103341. https://doi.org/10.1016/j.jmarsys.2020.103341

    Article  Google Scholar 

  • Carter, B. R., Williams, N. L., Gray, A. R., & Feely, R. A. (2016). Locally interpolated alkalinity regression for global alkalinity estimation. Limnology and Oceanography: Methods, 14(4), 268–277. https://doi.org/10.1002/LOM3.10087

    Article  Google Scholar 

  • Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., Fong, M. B., & Takeshita, Y. (2018). Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate. Limnology and Oceanography: Methods, 16(2), 119–131. https://doi.org/10.1002/LOM3.10232

    Article  CAS  Google Scholar 

  • Chaudry, M. A., & Zwolsman, J. J. G. (2008). Seasonal dynamics of dissolved trace metals in the Scheldt Estuary: Relationship with redox conditions and phytoplankton activity. Estuaries and Coasts, 31(2), 430–443. https://doi.org/10.1007/s12237-007-9030-7

    Article  CAS  Google Scholar 

  • Chen, G., Han, W., Li, Y., & Wang, D. (2016). Interannual variability of equatorial eastern Indian Ocean upwelling: Local versus remote forcing. Journal of Physical Oceanography, 46(3), 789–807. https://doi.org/10.1175/JPO-D-15-0117.1

    Article  Google Scholar 

  • Chouvelon, T., Steady, E., Harmelin-Vivien, M., Radakovitch, O., Brach-Papa, C., Crochet, S., Knoery, J., Rozuel, E., Thomas, B., Tronczynski, J., & Chiffoleau, J.-F. (2019). Patterns of trace metal bioaccumulation and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web. Marine Pollution Bulletin, 146, 1013–1030. https://doi.org/10.1016/j.marpolbul.2019.07.047

    Article  CAS  Google Scholar 

  • Coclet, C., Garnier, C., Durrieu, G., Omanović, D., D’Onofrio, S., Le Poupon, C., Mullot, J. U., Briand, J. F., & Misson, B. (2019). Changes in bacterioplankton communities resulting from direct and indirect interactions with trace metal gradients in an urbanized marine coastal area. Frontiers in Microbiology, 10. https://doi.org/10.3389/FMICB.2019.00257

  • Conway, T. M., Wolff, E. W., Rothlisberger, R., Mulvaney, R., & Elderfield, H. E. (2015). Constraints on soluble aerosol iron flux to the Southern Ocean at the last glacial maximum. Nature Communications, 6, 7850. https://doi.org/10.1038/ncomms8850

    Article  CAS  Google Scholar 

  • Damar, A., Hesse, K. J., Colijn, F., & Vitner, Y. (2019). The eutrophication states of the Indonesian sea large marine ecosystem: Jakarta Bay, 2001–2013. Deep-Sea Research Part II: Topical Studies in Oceanography, 163, 72–86. https://doi.org/10.1016/j.dsr2.2019.05.012

    Article  CAS  Google Scholar 

  • El Houssainy, A., Abi-Ghanem, C., Dang, D. H., Mahfouz, C., Omanović, D., Khalaf, G., Mounier, S., & Garnier, C. (2020). Distribution and diagenesis of trace metals in marine sediments of a coastal Mediterranean area: St Georges Bay (Lebanon). Marine Pollution Bulletin, 155, 111066. https://doi.org/10.1016/J.MARPOLBUL.2020.111066

    Article  Google Scholar 

  • Esperanza, B., Lopez-Mozos, M., Reguera, B., Chouci, P., Doval, M. D., Fernandez-Castro, B., Gilcoto, M., Nogueira, E., Souto, C., & Mourino-Carballido, B. (2020). Thin layers of phytoplankton and harmful algae events in a coastal upwelling system. Progress in Oceanography, 189, 102449. https://doi.org/10.1016/j.pocean.2020.102449

    Article  Google Scholar 

  • Fan, H., Wang, X., Zhang, H., & Yu, Z. (2018). Spatial and temporal variations of particulate organic carbon in the Yellow-Bohai Sea over 2002–20cienti16. Sfic Reports, 8(1), 7971. https://doi.org/10.1038/s41598-018-26373-w

    Article  CAS  Google Scholar 

  • Fang, T. H., & Lien, C. Y. (2020). Mini review of trace metal contamination status in East China Sea sediment. Marine Pollution Bulletin, 152, 110874. https://doi.org/10.1016/J.MARPOLBUL.2019.110874

    Article  CAS  Google Scholar 

  • Fatima, M., Usmani, N., & Hossain, M. M. (2013). Heavy metal in aquatic ecosystem emphasizing its effect on tissue bioaccumulation and histopathology: A review. Journal of Environmental Science and Technology, 7(1), 1–15. https://doi.org/10.3923/jest.2014.1.15

    Article  Google Scholar 

  • Fernández, N., Bellas, J., Lorenzo, J. I., & Beiras, R. (2008). Complementary approaches to assess the environmental quality of estuarine sediments. Water, Air, and Soil Pollution, 189(1–4), 163–177. https://doi.org/10.1007/s11270-007-9565-z

    Article  CAS  Google Scholar 

  • Gao, C., Fu, M., Song, H., Wang, L., Wei, Q., Sun, P., Liu, L., & Zhang, X. (2018). Phytoplankton pigment pattern in the subsurface chlorophyll maximum in the South Java coastal upwelling system. Indonesia. Acta Oceanologica Sinica, 37(12), 97–106. https://doi.org/10.1007/s13131-018-1342-x

    Article  CAS  Google Scholar 

  • Giglio, S. D., Agüera, A., Pernet, Ph., Zoudi, S. M., Angulo-Preckler, C., Avila, C., & Dubois, P. H. (2021). Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two Echinoderms from vent sites in Deception Island. Antarctica. Science of the Total Environment., 765, 142669. https://doi.org/10.1016/j.scitotenv.2020.142669

    Article  CAS  Google Scholar 

  • Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, D., Wijffels, S., Molcard, R., Field, A., Pranowo, W., & Wirasantosa, S. (2010). The Indonesian throughflow during 2004–2006 as observed by the INSTANT program in modeling and observing the Indonesian Throughflow. Dynamics of Atmospheres and Oceans, 50, 115–128. https://doi.org/10.1016/j.dynatmoce.2009.12.002

    Article  Google Scholar 

  • Gregg, W. W., Conkright, M. E., Ginoux, P., O’Reilly, J. E., & Casey, N. W. (2003). Ocean primary production and climate: Global decadal changes. Geophysical Research Letters, 30(15). https://doi.org/10.1029/2003GL016889

  • Gregg, W. W., & Rousseaux, C. S. (2019). Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environmental Research Letters, 14(12), 124011. https://doi.org/10.1088/1748-9326/AB4667

    Article  CAS  Google Scholar 

  • Groom, S., Sathyendranath, S., Ban, Y., Bernard, S., Brewin, R., Brotas, V., Brockmann, C., Chauhan, P., Choi, J., Chuprin, A., Ciavatta, S., Cipollini, P., Donlon, C., Franz, B., He, X., Hirata, T., Jackson, T., Kampel, M., Krasemann, H., & Wang, M. (2019). Satellite ocean colour: Current status and future perspective. Frontiers in Marine Science, 485. https://doi.org/10.3389/FMARS.2019.00485

  • Harmesa, & Cordova, M. R. (2020). A preliminary study on heavy metal pollutants chrome (Cr), cadmium (Cd), and lead (Pb) in sediments and beach morning glory vegetation (Ipomoea pes-caprae) from Dasun Estuary, Rembang. Indonesia Marine Pollution Bulletin, 162, 111819. https://doi.org/10.1016/j.marpolbul.2020.111819

    Article  CAS  Google Scholar 

  • Harmesa, H., Lestari, L., & Budiyanto, F. (2020). Distribusi Logam Berat Dalam Air Laut Dan Sedimen Di Perairan Cimanuk, Jawa Barat, Indonesia. Oseanologi dan Limnologi di Indonesia, 5(1), 19. https://doi.org/10.14203/oldi.2020.v5i1.310

  • Hatje, V., Birch, G., & Hill, D. (2001). Spatial and temporal variability of particulate trace metals in Port Jackson Estuary, Australia. Estuarine, Coastal and Shelf Science, 53(1), 63–77. https://doi.org/10.1006/ecss.2001.0792

    Article  CAS  Google Scholar 

  • Hendrizan, M., Kuhnt, W., & Holbourn, A. (2017). Variability of Indonesian through flow and Borneo runoff during the last 14 kyr. Paleoceanography, 32, 1054–1069. https://doi.org/10.1002/2016PA003030

    Article  Google Scholar 

  • Herawati, H., Suripin, S., Suharyanto, S., & Hetwisari, T. (2017). Analysis of river flow regime changes related to water availability on the Kapuas River. Indonesia. Irrigation and Drainage, 67(1), 66–71. https://doi.org/10.1002/ird.2103

    Article  Google Scholar 

  • Ho, P., Shim, M. J., Howden, S. D., & Shiller, A. M. (2019). Temporal and spatial distributions of nutrients and trace elements (Ba, Cs, Cr, Fe, Mn, Mo, U, V, and Re) in Mississippi coastal waters: Influence of hypoxia, submarine groundwater discharge, and episodic events”. Continental Shelf Research, 175, 53–69. https://doi.org/10.1016/j.csr.2019.01.013

    Article  Google Scholar 

  • Hoffmann, L. J., Breitbarth, E., Boyd, P. W., & Hunter, K. A. (2012). Influence of ocean warming and acidification on trace metal biogeochemistry. Marine Ecology Progress Series, 470, 191–205. https://doi.org/10.3354/meps10082

    Article  CAS  Google Scholar 

  • Hosono, T., Su, C. C., Delinom, R., Umezawa, Y., Toyota, T., Kaneko, S., & Taniguchi, M. (2011). Decline in heavy metal contamination in marine sediments in Jakarta Bay, Indonesia due to increasing environmental regulations. Estuarine Coastal and Shelf Science, 92(2), 297–306. https://doi.org/10.1016/j.ecss.2011.01.010

    Article  CAS  Google Scholar 

  • Hosono, T., Su, C. C., Siringan, F., Amano, A., & Onodera, S. (2010). Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay. Marine Pollution Bulletin, 60(5), 780–785. https://doi.org/10.1016/j.marpolbul.2010.03.005

    Article  CAS  Google Scholar 

  • Hossain, S., & Md., Ahmed, Md. K., Sarker, S., & Rahman, M. S. (2020). Seasonal variations of trace metals from water and sediment samples in the Northern Bay of Bengal”. Ecotoxicology and Environmental Safety, 193, 110347. https://doi.org/10.1016/j.ecoenv.2020.110347

    Article  CAS  Google Scholar 

  • Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1), 1011. https://doi.org/10.1029/2011JC007395

    Article  CAS  Google Scholar 

  • Ipeaiyeda, A. R., & Ayoade, A. R. (2017). Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline. Applied Water Science, 7(8), 4449–4459. https://doi.org/10.1007/s13201-017-0590-9

    Article  CAS  Google Scholar 

  • Iskandar, I., Rao, S. A., & Tozuka, T. (2009). Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. International Journal of Remote Sensing, 30(3), 663-671. https://doi.org/10.1080/01431160802372309

  • Isroni, W., Samara, S. H., & Santanumurti, M. B. (2019). Short communication: Application of artificial reefs for fisheries enhancement in Probolinggo, Indonesia. Biodiversitas, 20(8), 2273–2278. https://doi.org/10.13057/biodiv/d200823

  • Jeong, H., Choi, J. Y., Lim, J., Shim, W. J., Kim, Y. O., & Ra, K. (2020). Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Marine Pollution Bulletin, 161, 111717. https://doi.org/10.1016/J.MARPOLBUL.2020.111717

    Article  CAS  Google Scholar 

  • Jha, D. K., Ratnam, K., Rajaguru, S., Dharani, G., Devi, M. P., & Kirubagaran, R. (2019). Evaluation of trace metals in seawater, sediments, and bivalves of Nellore, southeast coast of India, by using multivariate and ecological tool. Marine Pollution Bulletin, 146, 1–10. https://doi.org/10.1016/J.MARPOLBUL.2019.05.044

    Article  CAS  Google Scholar 

  • Kim, T., Obata, H., & Gamo, T. (2015). Dissolved Zn and its speciation in the northeastern Indian Ocean and the Andaman Sea. Frontiers in Marine Science, 2. https://doi.org/10.3389/fmars.2015.00060

  • Kong, F., Dong, Q., Xiang, K., Yin, Z., Li, Y., & Liu, J. (2019). Spatiotemporal variability of remote sensing ocean net primary production and major forcing factors in the tropical eastern Indian and Western Pacific Ocean. Remote Sensing, 11(4), 391. https://doi.org/10.3390/rs11040391

    Article  Google Scholar 

  • Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H. A., Babin, M., Brewin, R. J. W., Doblin, M., Estrada, M., Figueiras, F. G., Furuya, K., González-Benítez, N., Gudfinnsson, H. G., Gudmundsson, K., Huang, B., Isada, T., Kovač, Ž, Lutz, V. A., & Sathyendranath, S. (2020). Primary production, an index of climate change in the ocean: Satellite-based estimates over two decades. Remote Sensing, 12(5), 826. https://doi.org/10.3390/RS12050826

    Article  Google Scholar 

  • Lee, T., Fournier, S., Gordon, A. L., & Sprintall, J. (2019). Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation. Nature Communications, 10(1), 2103. https://doi.org/10.1038/s41467-019-10109-z

    Article  CAS  Google Scholar 

  • Lestari, H., Haribowo, R., & Yuliani, E. (2019a). Determination of pollution load capacity using QUAL2Kw program on the Musi River, Palembang. Civil and Environmental Science Journal, 2(2), 105–116

    Article  Google Scholar 

  • Lestari, L., Budiyanto, F., & Manullang, C. Y. (2019b). A first record of metal fractionation in coastal sediment from Ambon Bay, Moluccas, Indonesia. Bulletin of the Marine Geology, 34(1), 29–36. https://doi.org/10.32693/bomg.34.1.2019.570

  • Lestari, L., & Budiyanto, F. (2019). Distribusi logam berat di Pulau Weh dan Sekitarnya In Sjafrie N.D.M dan Sianturi O.R (Edt) Pulau Weh Perairan, Biodiversitas dan Potensi Pesisir, Gadjah Mada University Press Yogyakarta, 57–74. (In Bahasa Indonesia)

  • Lestari, H., Taufiqurrahman, E., Budiyanto, F., Wahyudi, A. J. (2021). Hindcast estimates of trace metals potential variability. https://hdl.handle.net/20.500.12690/RIN/DG9FNJ, RIN Dataverse, V1 (Access date May 2021)

  • Libes, S.M. (2009). Introduction to marine biogeochemistry 2nd Edition. Academic Press. 928pp

  • Liu, J. J., Diao, Z. H., Xu, X. R., & Xie, Q. (2019). Effects of dissolved oxygen, salinity, nitrogen, and phosphorus on the release of heavy metals from coastal sediments. Science of the Total Environment, 666, 894–901. https://doi.org/10.1016/j.scitotenv.2019.02.288

    Article  CAS  Google Scholar 

  • Liu, S., Shi, J., Wang, J., Dai, Y., Li, H., Li, J., Liu, X., Chen, X., Wang, Z., & Zhang, P. (2021). Interactions between microplastics and heavy metals in aquatic environments: A review. Frontiers in Microbiology, 12, 730. https://doi.org/10.3389/FMICB.2021.652520

    Article  Google Scholar 

  • Lohan, M. C., & Tagliabue, A. (2018). Oceanic micronutrients: Trace metals that are essential for marine life. Elements, 14(6), 385–390. https://doi.org/10.2138/gselements.14.6.385

    Article  CAS  Google Scholar 

  • Longhurst, A. (1995). Seasonal cycles of pelagic production and consumption. Progress in Oceanography, 36(2), 77–167. https://doi.org/10.1016/0079-6611(95)00015-1

    Article  Google Scholar 

  • Lopes-Rocha, M., Langone, L., Miserocchi, S., Giordano, P., & Guerra, R. (2017). Spatial patterns and temporal trends of trace metal mass budgets in the Western Adriatic sediments (Mediterranean Sea). Science of the Total Environment, 599–600, 1022–1033. https://doi.org/10.1016/j.scitotenv.2017.04.114

    Article  CAS  Google Scholar 

  • Magnusson, B., & Westerlund, S. (1981). Solvent extraction procedures combined with back-extraction for trace metal determinations by atomic absorption spectrometry. Analytica Chimica Acta, 131, 63–72. https://doi.org/10.1016/S0003-2670(01)93534-2

    Article  CAS  Google Scholar 

  • Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Rachel, S., & A., & Zhang, Y. . (2018). Aerosol trace metal leaching and impacts on marine microorganisms. Nature Communications., 9(1), 2614. https://doi.org/10.1038/s41467-018-04970-7

    Article  CAS  Google Scholar 

  • Mellett, T., & Buck, K. N. (2020). Spatial and temporal variability of trace metals (Fe, Cu, Mn, Zn Co, Ni, Cd, Pb), iron and copper speciation, and electroactive Fe-binding humic substances in surface waters of the Eastern Gulf of Mexico. Marine Chemistry, 227, 103891. https://doi.org/10.1016/j.marchem.2020.103891

    Article  CAS  Google Scholar 

  • Morel, F. M. M. (2003). The biogeochemical cycles of trace metals in the oceans. Science, 300(5621), 944–947. https://doi.org/10.1126/science.1083545

    Article  CAS  Google Scholar 

  • Muawanah, U., Yusuf, G., Adrianto, L., Kalther, J., Pomeroy, R., Abdullah, H., & Ruchimat, T. (2018). Review of national laws and regulation in Indonesia in relation to an ecosystem approach to fisheries management. Marine Policy, 91, 150–160. https://doi.org/10.1016/j.marpol.2018.01.027

    Article  Google Scholar 

  • Nababan, B., Rosyadi, N., Manurung, D., Natih, N. M., & Hakim, R. (2016). The seasonal variability of sea surface temperature and chlorophyll-a concentration in the South of Makassar Strait”. Procedia Environmental Sciences, 33, 583–599. https://doi.org/10.1016/j.proenv.2016.03.112

    Article  CAS  Google Scholar 

  • Oktiani, B. W., Purwaningayu, J. H., Triawanti, A., & R., Sukmana, B.I., Widodo, A.D.W., & Huldani. . (2020). Microbial identification of water peatland in Banjar district, Gambut, South Borneo. European Journal of Molecular and Clinical Medicine, 7(1), 3867–3875.

    Google Scholar 

  • Oldham, V. E., Swenson, M. M., & Buck, K. N. (2014). Spatial variability of total dissolved copper and copper speciation in the inshore waters of Bermuda. Marine Pollution Bulletin., 79(1–2), 314–320. https://doi.org/10.1016/j.marpolbul.2013.12.016

    Article  CAS  Google Scholar 

  • Permana, R., & Pringgo, D. N. Y. P. K. (2020). Quantitative evaluation of shark fisheries from cantrang fishing gear in Mayangan coastal fishery port, Probolinggo. Indonesia. World News of Natural Sciences, 31, 70–78

    Google Scholar 

  • Pujiana, K., Gordon, A. L., Metzger, E. J., & Ffield, A. L. (2012). Dynamics of atmospheres and oceans the Makassar Strait pycnocline variability at 20–40 days. Dynamics of Atmospheres and Oceans, 53–54, 17–35. https://doi.org/10.1016/j.dynatmoce.2012.01.001

    Article  Google Scholar 

  • Pinedo-González, P., West, A. J., Tovar-Sánchez, A., Duarte, C. M., Marañón, E., Cermeño, P., González, N., Sobrino, C., Huete-Ortega, M., Fernández, A., López-Sandoval, D. C., Vidal, M., Blasco, D., Estrada, M., & Sañudo-Wilhelmy, S. A. (2015). Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity. Global Biogeochemical Cycles, 29(10), 1763–1781. https://doi.org/10.1002/2015GB005149

    Article  CAS  Google Scholar 

  • Purba, N. P., & Khan, A. M. A. (2019). Upwelling session in Indonesia waters. World News of Natural Sciences, 25, 72–83

    Google Scholar 

  • Qian, Y., Zhang, W., Yu, L., & Feng, H. (2015). Metal pollution in coastal sediments. Current Pollution Reports, 1(4), 203–219. https://doi.org/10.1007/s40726-015-0018-9

    Article  Google Scholar 

  • Romero-freire, A., Lassoued, J., Silva, E., Calvo, S., Pérez, F. F., Bejaoui, N., Babarro, J. M. F., & Cobelo-García, A. (2020). Trace metal accumulation in the commercial mussel M. galloprovincialis under future climate change scenarios. Marine Chemistry, 224, 103840. https://doi.org/10.1016/j.marchem.2020.103840

  • Rositasari, R., Puspitasari R., Budiyanto, F., & Lestari, L. (2018). Ecological changes over a century in the western coastal area of Jakarta Bay: Based on a short core sample. AIP Conference Proceedings, 020019. https://doi.org/10.1063/1.5064979

  • Sabdono, A., Radjasa, O. K., Trianto, A., Sarjito, M., & Wijayanti, D. P. (2019). Preliminary study of the effect of nutrient enrichment, released by marine floating cages, on the coral disease outbreak in Karimunjawa, Indonesia. Regional Studies in Marine Science, 30, 100704. https://doi.org/10.1016/j.rsma.2019.100704

    Article  Google Scholar 

  • Sabriham, S. (1989). Studies on peat in the coastal plains of Sumatra and Borneo. Southeast Asian Studies, 27(3), 339–351

    Google Scholar 

  • Sander, S. G. (2016). Using 67Cu to study the biogeochemical cycling of copper in the Northeast Subarctic Pacific. Frontiers in Marine Science, 3, 1–19. https://doi.org/10.3389/fmars.2016.00078

    Article  Google Scholar 

  • Sañudo-Wilhelmy, S., Olsen, K., Scelfo, J., Foster, T., & Flegal, A. (2002). Trace metal distributions off the Antarctic Peninsula in the Weddell Sea. Marine Chemistry, 77(2–3), 157–170. https://doi.org/10.1016/S0304-4203(01)00084-6

    Article  Google Scholar 

  • Sarma, V. V. S. S. (2006). The influence of Indian Ocean Dipole (IOD) on biogeochemistry of carbon in the Arabian Sea during 1997–1998. Journal of Earth System Science, 115(4), 433–450. https://doi.org/10.1007/BF02702872

    Article  Google Scholar 

  • Sharma, D., Biswas, H., Silori, S., Bandyopadhyay, D., Cardinal, D., Mandeng-yogo, M., & Ray, D. (2020). Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system. Marine Environmental Research, 155, 104880. https://doi.org/10.1016/j.marenvres.2020.104880

    Article  CAS  Google Scholar 

  • Sindern, S., Tremöhlen, M., Dsikowitzky, L., Gronen, L., Schwarzbauer, J., Siregar, T. H., Ariyani, F., & Irianto, H. E. (2016). Heavy metals in river and coast sediments of the Jakarta Bay region (Indonesia) — Geogenic versus anthropogenic sources. Marine Pollution Bulletin, 110(2), 624–633. https://doi.org/10.1016/j.marpolbul.2016.06.003

    Article  CAS  Google Scholar 

  • Siswanto, E., & Tanaka, K. (2014). Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends. Remote Sensing, 6(4), 2718–2742. https://doi.org/10.3390/RS6042718

  • Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T., Pujiana, K., & Wijffels, S. E. (2014). The Indonesian seas and their role in the coupled ocean–climate system. Nature Geoscience, 7(7), 487–492. https://doi.org/10.1038/ngeo2188

    Article  CAS  Google Scholar 

  • Sprintall, J., Gordon, A. L., Wijffels, S. E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Susanto, R. D., Sloyan, B., Peña-Molino, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A. J., & Setiawan, A. (2019). Detecting change in the Indonesian seas. Frontiers in Marine Science, 6, 257. https://doi.org/10.3389/fmars.2019.00257

    Article  Google Scholar 

  • Srichandan, S., Panigrahy, R. C., Baliarsingh, S. K., Rao, B., & S., Pati, P., Sahu, B. K., & Sahu, K. C. (2016). Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India. Marine Pollution Bulletin, 111(1–2), 468–475. https://doi.org/10.1016/J.MARPOLBUL.2016.06.099

    Article  CAS  Google Scholar 

  • Steinke, S., Prange, M., Feist, C., Groeneveld, J., & Mohtadi, M. (2014). Upwelling variability off Southern Indonesia over the past two millennia. Geophysical Research Letters, 41(21), 7684–7693. https://doi.org/10.1002/2014GL061450

    Article  Google Scholar 

  • Stockdale, A., Tipping, E., Lofts, S., & Mortimer, R. J. G. (2016). Effect of ocean acidification on organic and inorganic speciation of trace metals. Environmental Science and Technology, 50(4), 1906–1913. https://doi.org/10.1021/acs.est.5b05624

    Article  CAS  Google Scholar 

  • Stramska, M. (2009). Particulate organic carbon in the global ocean derived from SeaWiFS ocean color. Deep Sea Research Part I: Oceanographic Research Papers, 56(9), 1459–1470. https://doi.org/10.1016/J.DSR.2009.04.009

    Article  CAS  Google Scholar 

  • Stramska, M., & Bialogrodzka, J. (2016). Satellite observations of seasonal and regional variability of particulate organic carbon concentration in the Barents Sea. Oceanologia, 58(4), 249–263. https://doi.org/10.1016/J.OCEANO.2016.04.004

    Article  Google Scholar 

  • Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., & Claustre, H. (2008). Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 5(1), 171–201. https://doi.org/10.5194/BG-5-171-2008

  • Sulistiyani, P., Imanudin, M. S., & Said, M. (2019). Sedimentation rate and characteristics of Musi River Mud, Palembang City, South Sumatra. Journal of Wetlands Environmental Management, 7(1), 95–105. https://doi.org/10.20527/jwem.v7.v1.192

  • Sun, X., Li, B. S., Liu, X. L., & Li, C. X. (2020). Spatial variations and potential risks of heavy metals in seawater, sediments, and living organisms in Jiuzhen Bay. China. Journal of Chemistry, 2020, 1–13. https://doi.org/10.1155/2020/7971294

    Article  CAS  Google Scholar 

  • Sunda, W. G. (2012). Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2012.00204

    Article  Google Scholar 

  • Susanto, R. D., Gordon, A. L., & Zheng, Q. (2001). Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophysical Research Letters, 28(8), 1599–1602. https://doi.org/10.1029/2000GL011844

    Article  Google Scholar 

  • Takano, S., Tanimizu, M., Hirata, T., & Sohrin, Y. (2014). Isotopic constraints on biogeochemical cycling of copper in the ocean. Nature Communications, 5, 1–7. https://doi.org/10.1038/ncomms6663

    Article  CAS  Google Scholar 

  • Tappin, A. D., Hydes, D. J., Burton, J. D., & Statham, P. J. (1993). Concentrations, distributions and seasonal variability of dissolved Cd Co, Cu, Mn, Ni, Pb and Zn in the English Channel. Continental Shelf Research, 13(8–9), 941–969. https://doi.org/10.1016/0278-4343(93)90018-S

    Article  Google Scholar 

  • Taufiqurrahman, E., Wahyudi, A. J., & Masumoto, Y. (2020). The Indonesian throughflow and its impact on biogeochemistry in the Indonesian seas. ASEAN Journal on Science and Technology for Development, 37(1):29–35. https://doi.org/10.29037/ajstd.596

  • Titelboim, D., Sadekov, A., Blumenfeld, M., Almogi-Labin, A., Herut, B., Halicz, L., Benaltabet, T., Torfstein, A., Kucera, M., & Abramovich. S. (2021). Monitoring of heavy metals in seawater using single chamber foraminiferal sclerochronology. Ecological Indicators, 120, 106931. https://doi.org/10.1016/j.ecolind.2020.106931

  • Thi Dieu, Vu., & H., & Sohrin, Y. (2013). Diverse stoichiometry of dissolved trace metals in the Indian Ocean. Scientific Reports, 3(1), 1745. https://doi.org/10.1038/srep01745

    Article  CAS  Google Scholar 

  • Todd, S. E., Pufahl, P. K., Murphy, J. B., & Taylor, K. G. (2019). Sedimentology and oceanography of early ordovician ironstone, Bell Island, Newfoundland: Ferrunginous seawater and upwelling in the Rheic Ocean. Sedimentary Geology, 379, 1–15. https://doi.org/10.1016/j.sedgeo.2018.10.007

    Article  CAS  Google Scholar 

  • Triana, K., Wahyudi, A. J., Murakami-Sugihara, N., & Ogawa, H. (2021). Spatial and temporal variations in particulate organic carbon in Indonesian waters over two decades. Marine and Freshwater Research. https://doi.org/10.1071/MF20264

    Article  Google Scholar 

  • Twining, B. S., & Baines, S. B. (2013). The trace metal composition of marine phytoplankton. Annual Review of Marine Science, 5(1), 191–215. https://doi.org/10.1146/annurev-marine-121211-172322

    Article  Google Scholar 

  • Valdés, J., Román, D., Alvarez, G., Ortlieb, L., & Guiñez, M. (2008). Metals content in surface waters of an upwelling system of the Northern Humboldt current (Mejillones Bay, Chile). Journal of Marine Systems, 71(1–2), 18–30. https://doi.org/10.1016/j.jmarsys.2007.05.006

    Article  Google Scholar 

  • Wahyudi, A. J., Iskandar, M. R., Meirinawati, H., Vimono, I. B., Afianti, N. F., Sianturi, O. R., Wirawati, I., Darmayati, Y., & Sidabutar, T. (2017). Organic matter and nutrient profile of the two-current-regulated-zone in the southwestern Sumatran waters (Ssw). Marine Research in Indonesia, 42(1), 19. https://doi.org/10.14203/mri.v42i1.124

  • Wahyudi, A. J., Meirinawati, H., Prayitno, H. B., Suratno, S., Surinati, D., & Hernawan, U. E. (2019). The material origin of the particulate organic matter (POM) in the eastern Indonesian waters. AIP Conference Proceedings, 2175(1), 020047. https://doi.org/10.1063/1.5134611

    Article  CAS  Google Scholar 

  • Wang, J., Chen, S., & Xia, T. (2010). Environmental risk assessment of heavy metals in Bohai Sea, North China. Procedia Environmental Sciences, 2, 1632–1642. https://doi.org/10.1016/j.proenv.2010.10.174

    Article  Google Scholar 

  • Wang, D., Cui, Q., Gong, F., Wang, L., He, X., & Bai, Y. (2018). Satellite retrieval of surface water nutrients in the coastal regions of the East China Sea. Remote Sensing, 10(12), 1896. https://doi.org/10.3390/RS10121896

  • Wiggert, J. D., Vialard, J., & Behrenfeld, M. J. (2009). Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era. In Geophysical Monograph Series, 385–407. https://doi.org/10.1029/2008GM000776

  • Wirasatriya, A., Sugianto, D. N., Maslukah, L., Ahkam, M. F., Wulandari, S. Y., & Helmi, M. (2020). Carbon dioxide flux in the Java Sea estimated from satellite measurements. Remote Sensing Applications: Society and Environment, 20, 100376. https://doi.org/10.1016/j.rsase.2020.100376

    Article  Google Scholar 

  • van der Wulp, S. A., Damar, A., Ladwig, N., & Hesse, K. J. (2016). Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. Indonesia. Marine Pollution Bulletin, 110(2), 675–685. https://doi.org/10.1016/j.marpolbul.2016.05.015

    Article  CAS  Google Scholar 

  • Xie, M., & Wang, W. X. (2020). Contrasting temporal dynamics of dissolved and colloidal trace metals in the Pearl River Estuary. Environmental Pollution, 265, 114955. https://doi.org/10.1016/j.envpol.2020.114955

    Article  CAS  Google Scholar 

  • Yang, S., Hu, W., & Wang, X. (2021). Mechanism and implications of upwelling from the late Ordovician to early Silurian in the Yangtze Region, South China. Chemical Geology, 565, 120074. https://doi.org/10.1016/j.chemgeo.2021.120074

  • Yang, M., & Sañudo-Wilhelmy, S. A. (1998). Cadmium and manganese distributions in the Hudson River estuary: Interannual and seasonal variability. Earth and Planetary Science Letters, 160(3–4), 403–418. https://doi.org/10.1016/S0012-821X(98)00100-9

    Article  CAS  Google Scholar 

  • Yahyaoui, A., Ben Amor, R., Abidi, M., Grieco, G., Gueddari, M., & Chouba, L. (2021). Distribution and assessment of trace metal contamination in the surface sediments of the Meliane River and the Coast of the Gulf of Tunis (Tunisia, Mediterranean Sea). Environmental Forensics. https://doi.org/10.1080/15275922.2021.1887968

  • Zaborska, A., Strzelewicz, A., Rudnicka, P., & Moskalik, M. (2020). Processes driving heavy metal distribution in the seawater of an Arctic Fjord (Hornsund, Southern Spitsbergen). Marine Pollution Bulletin., 161, 111719. https://doi.org/10.1016/j.marpolbul.2020.111719

    Article  CAS  Google Scholar 

  • Zeroual, S., El Bakkal, S. E., Mansori, M., Lhernould, S., Faugeron-Girard, C., El Kaoua, M., & Zehhar, N. (2020). Cell wall thickening in two Ulva species in response to heavy metal marine pollution. Regional Studies in Marine Science, 35, 101125. https://doi.org/10.1016/j.rsma.2020.101125

    Article  Google Scholar 

  • Zhang, J., Kattner, G., & Koch, B. P. (2019). Interactions of trace elements and organic ligands in seawater and implications for quantifying biogeochemical dynamics: A review. Earth-Science Reviews, 192, 631–649. https://doi.org/10.1016/j.earscirev.2019.03.007

    Article  CAS  Google Scholar 

  • Zhang, J., Zhou, F., Chen, C., Sun, X., Shi, Y., Zhao, H., & Chen, F. (2018). Spatial distribution and correlation characteristics of heavy metals in the seawater, suspended particulate matter and sediments in Zhanjiang Bay. China. PLOS ONE, 13(8), e0201414. https://doi.org/10.1371/JOURNAL.PONE.0201414

    Article  Google Scholar 

  • Zhisheng, A., Guoxiong, W., Jianping, L., Youbin, S., Yimin, L., Weijian, Z., Yanjun, C., Anmin, D., Li, L., Jiangyu, M., Hai, C., Zhengguo, S., Liangcheng, T., Hong, Y., Hong, A., Hong, C., & Juan, F. (2015). Global monsoon dynamics and climate change. Annual Review of Earth and Planetary Sciences, 43(1), 29–77. https://doi.org/10.1146/annurev-earth-060313-054623

    Article  CAS  Google Scholar 

  • Zwolsman, J. J. G., Van Eck, B. T. M., & Van Der Weijden, C. H. (1997). Geochemistry of dissolved trace metals (cadmium, copper, zinc) in the Scheldt estuary, southwestern Netherlands: Impact of seasonal variability. Geochimica Et Cosmochimica Acta, 61(8), 1635–1652. https://doi.org/10.1016/S0016-7037(97)00029-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sea surface temperature, sea surface salinity, and sea surface chlorophyll-a concentration data were obtained from NASA Ocean Color Data (https://oceancolor.gsfc.nasa.gov/). Nutrient data, i.e., nitrate (NO3), phosphate (PO4), and silicate (SiO4), were obtained from E.U. Copernicus Marine Service Information (https://marine.copernicus.eu/). Primary production data were obtained from Oregon State University (http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.cbpm2.m.php).

Funding

The study was partially funded by LIPI’s COREMAP-CTI 2021–2022 (grant number 17/A/DK/2021), received by L and H. This article is also a contribution to the LIPI-JSPS joint research project funding (ID: JPJSBP120198201) granted to AJW.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this study and are considered primary contributors. A’an J. Wahyudi: conceptualization, supervision, visualization, resources, writing the initial draft, reviewing and editing, funding acquisition; Lestari: conceptualization, investigation, validation, resources, writing the initial draft, funding acquisition; Harmesa: conceptualization, investigation, validation, resources, formal analysis, writing the initial draft, funding acquisition; Edwards Taufiqurrahman: investigation, formal analysis, validation, resources, visualization; Fitri Budiyanto: investigation, validation, resources, data curation, writing, reviewing and editing.

Corresponding author

Correspondence to A’an Johan Wahyudi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The authors warrant that the manuscript has not been published before, is not presently being considered for publication elsewhere, does not infringe any intellectual property right of any person and its use under the license in this journal will not infringe any intellectual property right of any person, does not contain any subject matter that contravenes any laws (including defamatory material and misleading and deceptive material), and meets ethical standards applicable to the research discipline.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lestari, L., Harmesa, H., Taufiqurrahman, E. et al. Assessment of potential variability of cadmium and copper trace metals using hindcast estimates. Environ Monit Assess 193, 705 (2021). https://doi.org/10.1007/s10661-021-09501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09501-4

Keywords

Navigation