Skip to main content

Advertisement

Log in

Are Ephemeroptera, Plecoptera and Trichoptera traits reliable indicators of semi-urban pollution in the Tsitsa River, Eastern Cape Province of South Africa?

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The taxonomy-based response pattern of macroinvertebrates to pollution gradient is well established, with tolerant taxa increasing in impacted conditions, while sensitive taxa increase with decreasing deterioration, typical of rural pollution. This study identified rural indicator and sensitive traits of Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa by examining their trait distribution pattern in relation to rural pollution. Physicochemical parameters and EPT were sampled seasonally from August 2016 to April 2017. Eight sites were selected and categorised into three site groups. Site group 1 served as the least impacted site group and Site group 2 as the moderately influenced, whereas Site group 3 was the most impacted. Seven traits were selected and categorised into 27 trait modalities. The response of EPT traits to physicochemical parameters was analysed using the simultaneous analysis of the information contained in three tables: R (environmental characteristics of samples), L (taxa distribution across samples) and Q (species traits) (RLQ) and confirmed with fourth-corner analysis. Three trait attributes, large (10–20 mm), swimming, shredding, streamlined body shape and large body size (≥ 10–20), were considered tolerant signature traits of semi-urban pollution. These trait attributes were associated with the influenced Site group 3 and indicated a significant positive affinity with at least one physicochemical indicator of increasing semi-urban pollution (NH4-N, NO3-N, NO2-N, PO4-P, EC, turbidity, temperature and pH). Conversely, small body size (< 10 mm), operculate gills, spherical body shape and a preference for sediments were correlated with the least influenced Site group 1 and were considered sensitive traits of semi-urban disturbance. Overall, this study provided critical insights into EPT responses to disturbance, revealing that semi-urban activities influenced EPT traits differently in the Tsitsa River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is contained within the article or Supplementary Material.

References

  • Agboola, O. A., Downs, C. T., & O’Brien, G. (2019). Macroinvertebrates as indicators of ecological conditions in the rivers of KwaZulu-Natal. South Africa. Ecological Indicators, 106, 105465. https://doi.org/10.1016/j.ecolind.2019.105465

    Article  Google Scholar 

  • Akamagwuna, F. C. (2018). Taxonomic and trait-based responses of the orders ephemeroptera, plecoptera, odonata, and trichoptera (EPOT) to sediment stress in the Tsitsa River and its tributaries, Eastern Cape, South Africa. Rhodes University, M.S.c thesis.

  • Akamagwuna, F. C., Mensah, P. K., Nnadozie, C. F., & Odume, O. N. (2019). Evaluating the responses of taxa in the orders Ephemeroptera, Plecoptera and Trichoptera (EPT) to sediment stress in the Tsitsa River and its tributaries, Eastern Cape, South Africa. Environmental Monitoring and Assessment, 191(11). https://doi.org/10.1007/s10661-019-7846-9

  • American Public Health Association. (1998). Standard methods for the examination of water and wastewater (20th edn). American Public Health Association, 1.

  • Anderson, M., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA + for PRIMER user manual. PRIMER-E Ltd1, 1, 1:218.

  • Barber-James, H. M., & Gattolliat, J. L. (2012). How well are Afrotropical mayflies known? Status of current knowledge, practical applications, and future directions. Inland Waters, 2(1), 1–9. https://doi.org/10.5268/IW-2.1.447

    Article  Google Scholar 

  • Barber-James, H. M., Gattolliat, J. L., Sartori, M., & Hubbard, M. D. (2008). Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia, 595(1), 339–350. https://doi.org/10.1007/s10750-007-9028-y

    Article  Google Scholar 

  • Brederveld, R. J., Jähnig, S. C., Lorenz, A. W., Brunzel, S., & Soons, M. B. (2011). Dispersal as a limiting factor in the colonization of restored mountain streams by plants and macroinvertebrates. Journal of Applied Ecology, 48(5), 1241–1250. https://doi.org/10.1111/j.1365-2664.2011.02026.x

    Article  Google Scholar 

  • Buendia, C., Gibbins, C. N., Vericat, D., Batalla, R. J., & Douglas, A. (2013). Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecological Indicators, 25, 184–196. https://doi.org/10.1016/j.ecolind.2012.09.027

    Article  Google Scholar 

  • de Castro, D. M. P., Dolédec, S., & Callisto, M. (2018). Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators, 84, 573–582. https://doi.org/10.1016/j.ecolind.2017.09.030

    Article  Google Scholar 

  • Chevenet, F., Doledec, S., & Chessel, D. (1994). A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31(3), 295–309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.x

    Article  Google Scholar 

  • Cornejo, A., Pérez, J., López-Rojo, N., Tonin, A. M., Rovira, D., Checa, B., Jaramillo, N., Correa, K., Villarreal, A., Villarreal, V., García, G., Pérez, E., Ríos González, T. A., Aguirre, Y., Correa-Araneda, F., & Boyero, L. (2020). Agriculture impairs stream ecosystem functioning in a tropical catchment. Science of the Total Environment, 745, 140950. https://doi.org/10.1016/j.scitotenv.2020.140950

    Article  CAS  Google Scholar 

  • Dalu, T., Wasserman, R. J., Tonkin, J. D., Alexander, M. E., Dalu, M. T. B., Motitsoe, S. N., Manungo, K. I., Bepe, O., & Dube, T. (2017). Assessing drivers of benthic macroinvertebrate community structure in African highland streams: An exploration using multivariate analysis. In Science of the Total Environment (Vols. 601–602, pp. 1340–1348). https://doi.org/10.1016/j.scitotenv.2017.06.023

  • Day, J. A., & de Moor, I. J. (2002a). Guides to the freshwater invertebrates of southern Africa. Volume 5: Non-arthropods (the protozoans, Porifera, Cnidaria, Platyhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta and Hirudinea. Water Research Commision, 5. https://doi.org/WRCReport No.TT167/02

  • Day, J. A., & de Moor, I. J. (2002b). Guides to the freshwater invertebrates of southern Africa. Volume 6: Arachnida and Mollusca (Araneae, Water Mites and Mollusca). Water Research Commision, 6. https://doi.org/.WRCReport No.TT182/02

  • De Moor, I. J., Day, J. A., & De Moor, F. C. (2003a). Guides to the freshwater invertebrates of southern Africa: Insecta: Ephemeroptera, Odonata and Plecoptera. Water Research Commision, 7. https://doi.org/(report no.TT207/03.)

  • De Moor, I. J., Day, J. A., & De Moor, F. C. (2003b). Guides to the freshwater invertebrates of southern Africa. Volume 8: In- secta II: Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera. Water Research Commision, 8. https://doi.org/WRCReportNo.TT214/03

  • Descloux, S., Datry, T., & Usseglio-Polatera, P. (2014). Trait-based structure of invertebrates along a gradient of sediment colmation: Benthos versus hyporheos responses. Science of the Total Environment, The, 466–467, 265–276. https://doi.org/10.1016/j.scitotenv.2013.06.082

    Article  CAS  Google Scholar 

  • Desrosiers, M., Usseglio-Polatera, P., Archaimbault, V., Larras, F., Méthot, G., & Pinel-Alloul, B. (2019). Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Science of the Total Environment, 649, 233–246. https://doi.org/10.1016/j.scitotenv.2018.08.267

    Article  CAS  Google Scholar 

  • Díaz, A. M., Alonso, M. L. S., & Gutiérrez, M. R. V. A. (2008). Biological traits of stream macroinvertebrates from a semi-arid catchment: Patterns along complex environmental gradients. Freshwater Biology, 53(1), 1–21. https://doi.org/10.1111/j.1365-2427.2007.01854.x

    Article  Google Scholar 

  • Dickens, C. W., & Graham, P. M. (2002). The South African Scoring System (SASS) Version 5 rapid bioassessment method for Rivers. African Journal of Aquatic Science, 27(1), 1–10. https://doi.org/10.2989/16085914.2002.9626569

    Article  Google Scholar 

  • Ding, N., Yang, W., Zhou, Y., González-Bergonzoni, I., Zhang, J., Chen, K., Vidal, N., Jeppesen, E., Liu, Z., & Wang, B. (2017). Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Science of the Total Environment, 574, 288–299. https://doi.org/10.1016/j.scitotenv.2016.09.053

    Article  CAS  Google Scholar 

  • Dolédec, S., Chessel, D., ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: A new three-table ordination method. Environmental and Ecological Statistics, 3(2), 143–166. https://doi.org/10.1007/BF02427859

    Article  Google Scholar 

  • Doretto, A., Piano, E., Bona, F., & Fenoglio, S. (2018). How to assess the impact of fine sediments on the macroinvertebrate communities of alpine streams? A selection of the best metrics. Ecological Indicators, 84, 60–69. https://doi.org/10.1016/j.ecolind.2017.08.041

    Article  Google Scholar 

  • Dray, S., & Dufour, A. B. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04

  • Edegbene, A., Arimoro, F. O., & Odume, O. N. (2020a). How does urban pollution influence macroinvertebrate traits in forested riverine systems? Water, 1, 2–17. https://doi.org/10.3390/w12113111

    Article  Google Scholar 

  • Edegbene, A. O., Arimoro, F. O., Odume, O. N., Ogidiaka, E., & Keke, U. N. (2021). Can macroinvertebrate traits be explored and applied in biomonitoring riverine systems draining forested catchments? Frontiers in Water, 3(607556). https://doi.org/10.3389/frwa.2021.607556

  • Edegbene, O., Arimoro, O., & Odume, O. (2020b). Exploring the distribution patterns of macroinvertebrate signature traits and ecological preferences and their responses to urban and agricultural pollution in selected rivers in the Niger Delta ecoregion, Nigeria. Aquatic Ecology, 9, 1–18. https://doi.org/10.1007/s10452-020-09759-9

    Article  CAS  Google Scholar 

  • Environment Systems Research Institute. (2013). ArcGIS Version 10. Environment Systems Research Institute Inc.

    Google Scholar 

  • Feio, M. J., Dol Edec, S., & Graça, M. A. S. (2015). Human disturbance affects the long-term spatial synchrony of freshwater invertebrate communities. Environmental Pollution, 196, 300–308. https://doi.org/10.1016/j.envpol.2014.09.026

    Article  CAS  Google Scholar 

  • Feio, M. J., & Dolédec, S. (2012). Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: A case study in Portugal. Ecological Indicators, 15(1), 236–247. https://doi.org/10.1016/j.ecolind.2011.09.039

    Article  CAS  Google Scholar 

  • Ferreira, W. R., Ligeiro, R., Macedo, D. R., Hughes, R. M., Kaufmann, P. R., Oliveira, L. G., & Callisto, M. (2014). Importance of environmental factors for the richness and distribution of benthic macroinvertebrates in tropical headwater streams. Freshwater Science, 33(3), 860–871. https://doi.org/10.1086/676951

    Article  Google Scholar 

  • Gayraud, S., & Philippe, M. (2001). Does subsurface interstitial space influence general features and morphological traits of the benthic macroinvertebrate community in streams? Archiv Fur Hydrobiologie, 151(4), 667–686. https://doi.org/10.1127/archiv-hydrobiol/151/2001/667

    Article  Google Scholar 

  • Genito, D., Gburek, W. J., & Sharpley, A. N. (2002). Response of stream macroinvertebrates to agricultural land cover in a small watershed. Journal of Freshwater Ecology, 17(1), 109–119. https://doi.org/10.1080/02705060.2002.9663874

    Article  CAS  Google Scholar 

  • Gerth, W. J., Li, J., & Giannico, G. R. (2017). Agricultural land use and macroinvertebrate assemblages in lowland temporary streams of the Willamette Valley, Oregon, USA. Agriculture, Ecosystems & Environment, 236, 154–165. https://doi.org/10.1016/j.agee.2016.11.010

    Article  Google Scholar 

  • Gieswein, A., Hering, D., & Lorenz, A. W. (2019). Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.10.180

    Article  Google Scholar 

  • Gong, P., Liu, H., Cai, C., Wang, G., Xin, Y., & Dai, X. (2020). Alkaline-thermally treated penicillin V mycelial residue amendment improved the soil properties without triggering antibiotic resistance. In Waste Management (Vol. 105, pp. 248–255). https://doi.org/10.1016/j.wasman.2020.02.008

  • Gwapedza, D., Nyamela, N., Hughes, D. A., Slaughter, A. R., Mantel, S. K., & van der Waal, B. (2020). Prediction of sediment yield of the Inxu River catchment (South Africa) using the MUSLE. International Soil and Water Conservation Research, . https://doi.org/10.1016/j.iswcr.2020.10.003

    Article  Google Scholar 

  • Kuzmanovic, M., Dolédec, S., de Castro-Catala, N., Ginebreda, A., Sabater, S., Muñoz, I., & Barceló, D. (2017). Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. Environmental Research, 156, 485–493. https://doi.org/10.1016/j.envres.2017.03.054

    Article  CAS  Google Scholar 

  • Lamouroux, N., Dolédec, S., & Gayraud, S. (2004). Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society, 23(3), 449–466. https://doi.org/10.1899/0887-3593(2004)023%3c0449:btosmc%3e2.0.co;2

    Article  Google Scholar 

  • Larsen, S., & Ormerod, S. J. (2010). Low-level effects of inert sediments on temperate stream invertebrates. Freshwater Biology, 55(2), 476–486. https://doi.org/10.1111/j.1365-2427.2009.02282.x

    Article  Google Scholar 

  • Le Roux, J. J., & Sumner, P. D. (2013). Water erosion risk assessment in South Africa: A proposed methodological framework. Swedish Society for Anthropology and Geography, 95(4), 323–336. https://doi.org/10.1111/geoa.12018

    Article  Google Scholar 

  • Libala, N., Palmer, C. G., & Odume, O. N. (2020). Using a trait-based approach for assessing the vulnerability and resilience of hillslope seep wetland vegetation cover to disturbances in the Tsitsa River catchment, Eastern Cape. South Africa. Ecology and Evolution, 10(1), 277–291. https://doi.org/10.1002/ece3.5893

    Article  Google Scholar 

  • MacCausland, A., & McTammany, M. E. (2007). The impact of episodic coal mine drainage pollution on benthic macroinvertebrates in streams in the Anthracite region of Pennsylvania. Environmental Pollution, 149(2), 216–226. https://doi.org/10.1016/j.envpol.2006.12.030

    Article  CAS  Google Scholar 

  • Magbanua, F. S., Townsend, C. R., Blackwell, G. L., Phillips, N., & Matthaei, C. D. (2010). Responses of stream macroinvertebrates and ecosystem function to conventional, integrated and organic farming. Journal of Applied Ecology, 47(5), 1014–1025. https://doi.org/10.1111/j.1365-2664.2010.01859.x

    Article  Google Scholar 

  • Masese, F. O., & Raburu, P. O. (2017). Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. African Journal of Aquatic Science, 42(3), 219–233. https://doi.org/10.2989/16085914.2017.1392282

    Article  Google Scholar 

  • Masese, F. O., Kitaka, N., Kipkemboi, J., Gettel, G. M., Irvine, K., & McClain, M. E. (2014). Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams. Ecological Indicators, 46, 23–37. https://doi.org/10.1016/j.ecolind.2014.05.032

    Article  Google Scholar 

  • Merritt, R. W., Cummins, K. W., & Berg, M. B. (2008). An introduction to the aquatic insects of North America. (4th ed.). Kendall/Hunt Publishing Company.

    Google Scholar 

  • Mlambo, V. (2018). An overview of rural-urban migration in South Africa: Its causes and implications. Archives of Business Research, 6(4), 63–70. https://doi.org/10.14738/abr.64.4407

  • Mondy, C. P., & Usseglio-Polatera, P. (2014). Using fuzzy-coded traits to elucidate the non-random role of anthropogenic stress in the functional homogenisation of invertebrate assemblages. Freshwater Biology, 59(3), 584–600. https://doi.org/10.1111/fwb.12289

    Article  Google Scholar 

  • Ntloko, P., Palmer, C. G., Akamagwuna, F. C., & Odume, O. N. (2021). Exploring macroinvertebrates ecological preferences and trait-based indicators of suspended fine sediment effects in the Tsitsa River and its tributaries, Eastern Cape. South Africa. Water, 13(6), 798. https://doi.org/10.3390/w13060798

    Article  Google Scholar 

  • Odume, O., & Mgaba, N. (2016). statistical analysis of macroinvertebrate community assemblage structure in relation to river health assessment of an urban river, Eastern Cape, South Africa. Aquatic Ecosystem Health and Management, 4988(May 2017). https://doi.org/10.1080/14634988.2016.1255098

  • Odume, O. N. (2020). Searching for urban pollution signature and sensitive macroinvertebrate traits and ecological preferences in a river in the Eastern Cape of South Africa. Ecological Indicators, 108, 105759. https://doi.org/10.1016/j.ecolind.2019.105759

  • Odume, O., Ntloko, P., Akamagwuna, F., Dallas, H., & Barber-James, H. (2018). A trait database for South African macroinvertebrates. Water Research Commission, K1/7157.

  • Palmer, C. G. (1991). Benthic assemblage structure, and the feeding biology of sixteen macro invertebrate taxa from the Buffalo River, Eastern cape, South Africa. Rhodes University, Ph.D. thesis.

  • Palmer, C. G., Maart, B., Palmer, A. R., & O’keeffe, J. H. (1996). An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia, 318, 153–164. https://link.springer.com/content/pdf/10.1007%2Fbf00016677.pdf

  • Palmer, Carolyn G, & Keeffe, J. H. O. (1992). Feeding patterns of four macroinvertebrate taxa in the headwaters of the Buffalo River , eastern Cape. Hydrobiologia, 157–173.

  • Palmer, C. G., O’Keeffe, J., & Palmer, A. (1993). Macroinvertebrate functional feeding groups in the middle and lower reaches of the Buffalo River Eastern Cape, South Africa. II. Functional morphology and behaviour. Freshwater Biology, 29, 455–462.

    Google Scholar 

  • Palmer, C. G., O’Keeffe, J., Palmer, A., Dunne, T., & Radloff, S. (1993). Macroinvertebrate functional feeding groups in the middle and lower reaches of the Buffalo River, Eastern Cape, South Africa. I. Dietary variability. Freshwater Biology, 29(3), 441–453. https://doi.org/10.1111/j.1365-2427.1993.tb00778.x

    Article  Google Scholar 

  • Parwada, C., & Tol, J. Van. (2017). Soil properties influencing erodibility of soils in the Ntabelanga area, Eastern Cape Province, South Africa. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 67(1), 67–76. https://doi.org/10.1080/09064710.2016.1220614

  • Pease, A. A., Taylor, J. M., Winemiller, K. O., King, R. S., Pease, A. A., Winemiller, Á. K. O., Taylor, J. M., & King, Á. R. S. (2015). Ecoregional, catchment, and reach-scale environmental factors shape functional-trait structure of stream fish assemblages. Hydrobiologia, 753, 265–283. https://doi.org/10.1007/s10750-015-2235-z

    Article  Google Scholar 

  • Petersen, C. R., Jovanovic, N. Z., Le Maitre, D. C., & Grenfell, M. C. (2017). Effects of land use change on streamflow and stream water quality of a coastal catchment. Online) = Water SA, 43(1). https://doi.org/10.4314/wsa.v43i1.16

  • Poff, N. L., Olden, J. D., Vieira, N. K. M., Finn, D. S., Simmons, M. P., & Kondratieff, B. C. (2006). Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society, 25(4), 730–755. https://sites.biology.colostate.edu/poff/Public/poffpubs/Poffetal_2006_FunctionalTraitNiche_JNABS.pdf

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/R

  • Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall.

    Google Scholar 

  • Rubach, M. N., Baird, D. J., Boerwinkel, M.-C., Maund, S. J., Ivo, @bullet, @bullet, R., & Van Den Brink, P. J. (2012). Species traits as predictors for intrinsic sensitivity of aquatic invertebrates to the insecticide chlorpyrifoshttps://link.springer.com/content/pdf/10.1007/s10646-012-0962-8.pdf

  • Shieh, S. H., Wang, L.-K., & Hsiao, W.-F. (2012). Shifts in functional traits of aquatic insects along a subtropical stream in Taiwan. Zoological Studies. http://zoolstud.sinica.edu.tw/Journals/51.7/1051.pdf

  • Siegloch, A. E., Schmitt, R., Spies, M., Petrucio, M., & Hernandez, M. I. M. (2017). Effects of small changes in riparian forest complexity on aquatic insect bioindicators in Brazilian subtropical streams. Marine and Freshwater Research, 68(3), 519–527. https://doi.org/10.1071/MF15162

    Article  Google Scholar 

  • Stepenuck, K. F., Crunkilton, R. L., & Wang, L. (2002). Impacts of urban landuse on macroinvertebrate communities in southeastern Wisconsin streams. Journal of the American Water Resources Association, 38(4), 1041–1051. https://doi.org/10.1111/j.1752-1688.2002.tb05544.x

    Article  Google Scholar 

  • Tiecher, T., Minella, J. P. G., Caner, L., Evrard, O., Zafar, M., Capoane, V., Le Gall, M., & dos Santos, D. R. (2017). Quantifying land use contributions to suspended sediment in a large cultivated catchment of Southern Brazil (Guaporé River, Rio Grande do Sul). Agriculture, Ecosystems and Environment, 237, 95–108. https://doi.org/10.1016/j.agee.2016.12.004

    Article  Google Scholar 

  • Tomanova, S., Goitia, E., & Helesˇic, J. H. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556(3), 251–264. https://doi.org/10.1007/s10750-005-1255-5

    Article  Google Scholar 

  • van der Waal, B., Rowntree, K., Roux, J., Buckle, J., Biggs, H., Braack, M., Kawa, M., Wolff, M., Palmer, T., Sisitka, L., Powell, M., Clark, R., Ntshudu, M., Mtati, N., Tol, J. Van, & Zijl, G. Van. (2017). THE TSITSA PROJECT Restoration and sustainable land management plan infrastructure for improved livelihoods and futures. Department of Environmental Affairs, 5.

  • Van Tol, J. J., Akpan, W., Maroyi, A., Mutengwende, N., Huchermeyer, N., Ngesi, S., Nqandeka, H. M., Mamera, M., Bradley, G., & Rowntree, K. M. (2018). The Mzimvubu Water Project: Baseline indicators for long-term impact monitoring. In WRC project No. K5/2433 (Issue 2433).

  • Verberk, W. C. E. P., van Noordwijk, C. G. E., & Hildrew, A. G. (2013). Delivering on a promise: Integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science, 32(2), 531–547. https://doi.org/10.1899/12-092.1

    Article  Google Scholar 

  • Voß, K., & Schäfer, R. B. (2017). Taxonomic and functional diversity of stream invertebrates along an environmental stress gradient. Ecological Indicators, 81, 235–242. https://doi.org/10.1016/j.ecolind.2017.05.072

    Article  Google Scholar 

  • Yadamsuren, O., Morse, J. C., Hayford, B., Gelhaus, J. K., & Adler, P. H. (2020). Macroinvertebrate community responses to land use: A trait-based approach for freshwater biomonitoring in Mongolia. Hydrobiologia, 847(8), 1887–1902. https://doi.org/10.1007/s10750-020-04220-2

    Article  Google Scholar 

  • Yang, Y., Yi, Y., Zhou, Y., Wang, X., Zhang, S., & Yang, Z. (2020). Spatio-temporal variations of benthic macroinvertebrates and the driving environmental variables in a shallow lake. Ecological Indicators, 110(November 2019), 105948. https://doi.org/10.1016/j.ecolind.2019.105948

  • Zhang, Y., Cheng, L., Tolonen, K. E., Yin, H., Gao, J., Zhang, Z., Li, K., & Cai, Y. (2018). Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China. Science of the Total Environment, 627, 57–66. https://doi.org/10.1016/j.scitotenv.2018.01.232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Water Research Commission of South Africa for funding this project under project no. K1/7157. The Rhodes University Council is also acknowledged for partial funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Chukwuzuoke Akamagwuna.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akamagwuna, F.C., Ntloko, P., Edegbene, A.O. et al. Are Ephemeroptera, Plecoptera and Trichoptera traits reliable indicators of semi-urban pollution in the Tsitsa River, Eastern Cape Province of South Africa?. Environ Monit Assess 193, 309 (2021). https://doi.org/10.1007/s10661-021-09093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09093-z

Keywords

Navigation