Skip to main content

Advertisement

Log in

Unmanned Aerial Vehicle (UAV) applications in coastal zone management—a review

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change and intense anthropogenic activities have heightened the vulnerability of coastal areas globally. The intensification in the dynamism and uncertainty of coastal processes and change in the past few decades have led researchers and coastal managers to explore new tools with the capability of undertaking a rapid assessment of coastal resources at a relatively lower cost compared with the conventional in situ data collection. The latest advances in unmanned aerial vehicle (UAV) platforms and sensor technologies have made them useful environmental remote sensing tools due to the high temporal and spatial resolution and relatively inexpensive operating costs. This study reviews literature that explored UAV applications in five different areas of the coastal zone comprising the intertidal, coastal organisms and habitats, marine litter, coastal zone disaster management, and coastal zone land use and land cover mapping. The review provides evidence of the potentials and effectiveness of UAVs for coastal zone management (CZM). However, factors such as difficulty in imaging water, setting out ground control points (GCPs) for geolocation of images, and processing large volumes of data can pose a challenge to coastal managers. Extensive review shows the capabilities of current UAV technologies for monitoring and tracking changes in the coastal environment at high spatial and temporal resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Appeaning Addo, K., Jayson-Quashigah, P. N., Codjoe, S. N. A., & Martey, F. (2018). Drone as a tool for coastal flood monitoring in the Volta Delta, Ghana. Geoenvironmental Disasters, 5(1). https://doi.org/10.1186/s40677-018-0108-2

  • Barlow, J., Gilham, J., & Ibarra Cofrã, I. (2017). Kinematic analysis of sea cliff stability using UAV photogrammetry. International Journal of Remote Sensing, 38(8–10), 2464–2479. https://doi.org/10.1080/01431161.2016.1275061

    Article  Google Scholar 

  • Cao, J., Leng, W., Liu, K., Liu, L., He, Z., & Zhu, Y. (2018). Object-Based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sensing, 10(1). https://doi.org/10.3390/rs10010089

  • Casella, E., Rovere, A., Pedroncini, A., Stark, C. P., Casella, M., Ferrari, M., & Firpo, M. (2016a). Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo-Marine Letters, 36(2), 151–163. https://doi.org/10.1007/s00367-016-0435-9

    Article  Google Scholar 

  • Casella, E., Collin, A., Harris, D., Ferse, S., Bejarano, S., Parravicini, V., et al. (2016b). Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs, 36(1), 269–275. https://doi.org/10.1007/s00338-016-1522-0

    Article  Google Scholar 

  • Chabot, D., Dillon, C., Shemrock, A., Weissflog, N., & Sager, EPS. (2018). An object-based image analysis workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. International Journal of Geo-Information, 7. https://doi.org/10.3390/ijgi7080294

  • Chen, B., Yang, Y., Wen, H., Ruan, H., Zhou, Z., Luo, K., & Zhong, F. (2018). High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery. Ocean and Coastal Management, 160(February), 103–116. https://doi.org/10.1016/j.ocecoaman.2018.04.007

    Article  Google Scholar 

  • Clark, J. R. (1997). Coastal zone management for the new century. Ocean and Coastal Management, 37(2), 191–216. https://doi.org/10.1016/S0964-5691(97)00052-5

    Article  Google Scholar 

  • Collin, A., Ramambason, C., Pastol, Y., Casella, E., Rovere, A., Thiault, L., et al. (2018). Very high resolution mapping of coral reef state using airborne bathymetric lidar surface-intensity and drone imagery. International Journal of Remote Sensing, 39(17), 5676–5688. https://doi.org/10.1080/01431161.2018.1500072

    Article  Google Scholar 

  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  • Crossland, C. J., Baird, D., Ducrotoy, J.-P., Lindeboom, H., Buddemeier, R. W., Dennison, W. C., et al. (2005). The coastal zone—a domain of global interactions. Oecd, 2001, 1–37. https://doi.org/10.1007/3-540-27851-6_1

    Article  Google Scholar 

  • Darwin, N., Ahmad, A., & Zainon, O. (2014). The potential of unmanned aerial vehicle for large scale mapping of coastal area. IOP Conference Series: Earth and Environmental Science, 18(1). https://doi.org/10.1088/1755-1315/18/1/012031

  • Deidun, A., Gauci, A., Lagorio, S., & Galgani, F. (2018). Optimising beached litter monitoring protocols through aerial imagery. Marine Pollution Bulletin, 131(April), 212–217. https://doi.org/10.1016/j.marpolbul.2018.04.033

    Article  CAS  Google Scholar 

  • Díaz-Delgado, R., Cazacu, C., & Adamescu, M. (2018). Rapid assessment of ecological Integrity for LTER wetland sites by using UAV multispectral mapping. Drones, 3(1), 3. https://doi.org/10.3390/drones3010003

    Article  Google Scholar 

  • Doughty, C. L., & Cavanaugh, K. C. (2019). Mapping coastal wetland biomass from high resolution unmanned aerial vehicle (UAV) imagery. Remote Sensing, 11(5). https://doi.org/10.3390/rs11050540

  • Duo, E., Chris Trembanis, A., Dohner, S., Grottoli, E., & Ciavola, P. (2018). Local-scale post-event assessments with GPS and UAV-based quick-response surveys: A pilot case from the Emilia-Romagna (Italy) coast. Natural Hazards and Earth System Sciences, 18(11), 2969–2989. https://doi.org/10.5194/nhess-18-2969-20182018

    Article  Google Scholar 

  • Fairley, I., Mendzil, A., Togneri, M., & Reeve, D. E. (2018). The use of unmanned aerial systems to map intertidal sediment. Remote Sensing, 10(12). https://doi.org/10.3390/rs10121918

  • Fallati, L., Polidori, A., Salvatore, C., Saponari, L., Savini, A., & Galli, P. (2019). Anthropogenic Marine Debris assessment with unmanned aerial vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Science of the Total Environment, 693, 133581. https://doi.org/10.1016/j.scitotenv.2019.133581

    Article  CAS  Google Scholar 

  • Foody, G. (1992). On the compensation for chance agreement in image classification accuracy assessment. Photogrammetric Engineering and Remote Sensing, 58(10), 1459–1460. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4313997

  • Green, D. R., Hagon, J. J., Gómez, C., & Gregory, B. J. (2019). Using low-cost UAVs for environmental monitoring, mapping, and modelling: Examples from the coastal zone. Coastal Management. https://doi.org/10.1016/b978-0-12-810473-6.00022-4

    Article  Google Scholar 

  • Jaud, M., Delacourt, C., Dantec, N. Le, Allemand, P., Ammann, J., Grandjean, P., Nouaille, H., Prunier, C., Cuq, V., Augereau, E., Cocquempot, L., & Floc’h, F. (2019). Diachronic UAV photogrammetry of a sandy beach in Brittany (France) for a long-term coastal observatory. ISPRS International Journal of Geo-Information, 8(6). https://doi.org/10.3390/ijgi8060267

  • Jaud, M., Grasso, F., Le Dantec, N., Verney, R., Delacourt, C., Ammann, J., Deloffre, J., & Grandjean, P. (2016a). Potential of UAVs for monitoring mudflat morphodynamics. Application to the Seine International Journal of Geo-Information, 5https://doi.org/10.3390/ijgi5040050

  • Jaud, M., Passot, S., Le Bivic, R., Delacourt, C., Grandjean, P., & Le Dantec, N. (2016b). Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions. Remote Sensing, 8(6). https://doi.org/10.3390/rs8060465

  • Kiszka, J. J., Mourier, J., Gastrich, K., & Heithaus, M. R. (2016). Using unmanned aerial vehicles ( UAVs ) to investigate shark and ray densities in a shallow coral lagoon. 560, 237–242. https://doi.org/10.3354/meps11945

  • Klemas, V. V. (2015). Coastal and environmental remote sensing from unmanned aerial vehicles: An overview. Journal of Coastal Research, 315, 1260–1267. https://doi.org/10.2112/jcoastres-d-15-00005.1

    Article  Google Scholar 

  • Ko, K., & Lee, H. J. (2019). Detecting geological structures in coastal areas with unmanned aerial vehicle photogrammetric surveys. Journal of Coastal Research, 90(sp1), 362–368. https://doi.org/10.2112/SI90-046.1

    Article  Google Scholar 

  • Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S., & Ball, M. C. (2017). Mangrove dieback during fluctuating sea levels. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-017-01927-6

    Article  CAS  Google Scholar 

  • Martin, C., Parkes, S., Zhang, Q., Zhang, X., Mccabe, M. F., & Duarte, C. M. (2018). Use of unmanned aerial vehicles for efficient beach litter monitoring. Marine Pollution Bulletin, 131(April), 662–673. https://doi.org/10.1016/j.marpolbul.2018.04.045

    Article  CAS  Google Scholar 

  • Merlino, S., Paterni, M., Berton, A., & Massetti, L. (2020). Unmanned aerial vehicles for debris survey in coastal areas: Long-term monitoring programme to study spatial and temporal accumulation of the dynamics of beached marine litter. Remote Sensing, 12(8), 1–23. https://doi.org/10.3390/RS12081260

    Article  Google Scholar 

  • Mumby, P. J., Green, E. P., Edwards, A. J., & Clark, C. D. (1999). The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. Journal of Environmental Management, 55(3), 157–166. https://doi.org/10.1006/jema.1998.0255

    Article  Google Scholar 

  • Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS One, 10(3). https://doi.org/10.1371/journal.pone.0118571

  • Papakonstantinou, A., Topouzelis, K., & Pavlogeorgatos, G. (2016). Coastline zones identification and 3D coastal mapping using UAV spatial data. ISPRS International Journal of Geo-Information, 5(6), 1–14. https://doi.org/10.3390/ijgi5060075

    Article  Google Scholar 

  • Schulz-Stellenfleth, J., & Staneva, J. (2019). A multi-collocation method for coastal zone observations with applications to Sentinel-3A altimeter wave height data. Ocean Science, 15(2), 249–268. https://doi.org/10.5194/os-15-249-2019

    Article  Google Scholar 

  • Shaw, L., Helmholz, P., Belton, D., & Addy, N. (2019). Comparison of uav lidar and imagery for beach monitoring. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W13), 589–596. https://doi.org/10.5194/isprs-archives-XLII-2-W13-589-2019

  • Sturdivant, E. J., Lentz, E. E., Thieler, E. R., Farris, A. S., Weber, K. M., Remsen, D. P., Miner, S., & Henderson, R. E. (2017). UAS-SfM for coastal research: Geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery. Remote Sensing, 9(10). https://doi.org/10.3390/rs9101020

  • Thia-Eng, C. (1993). Essential elements of integrated coastal zone management. Ocean and Coastal Management, 21(1–3), 81–108. https://doi.org/10.1016/0964-5691(93)90021-P

    Article  Google Scholar 

  • United Nations. (2017). Factsheet: People and oceans. In The Ocean Conference. New York. Retrieved from https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf (n.d.)

  • Vanhellemont, Q., Ruddick, K., Directorate, O., & Environment, N. (2014). Landsat-8 as a precursor to Sentinel-2 : Observations of human impacts in coastal waters. Proceedings of the Sentinel-2 for Science Workshop, SP-726(May), 20–23.

  • Wong, P. P., Losada, I. J., Gattuso, J.-P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y., & Sallenger, A. (2014). Coastal systems and low-lying areas coordinating. In Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 361–409).

  • Yang, B., Hawthorne, T. L., Torres, H., & Feinman, M. (2019). Using object-oriented classification for coastal management in the east central coast of Florida: A quantitative comparison between UAV, satellite, and aerial data. Drones, 3(3), 60. https://doi.org/10.3390/drones3030060

    Article  Google Scholar 

  • Yao, H., Qin, R., & Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications—A review. In Remote Sensing (Vol. 11, Issue 12). https://doi.org/10.3390/rs11121443

Download references

Acknowledgements

Special appreciation is expressed to Prof. Appolonia Okhimamhe for her support.

Funding

This study was funded by the German Federal Ministry of Education and Research (BMBF) through the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, R.A. and A.M.A.; Literature review, R.A.; writing—original draft preparation, R.A and A.M.A.; writing—review and editing, B.E. and J.N.A. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Richard Adade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adade, R., Aibinu, A.M., Ekumah, B. et al. Unmanned Aerial Vehicle (UAV) applications in coastal zone management—a review. Environ Monit Assess 193, 154 (2021). https://doi.org/10.1007/s10661-021-08949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08949-8

Keywords

Navigation