Skip to main content

Advertisement

Log in

Occurrence, behaviour and environmental risk assessment of trace metals in stream sediments from southwestern Burkina Faso, West Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, the influence of source area weathering and provenance on the stream sediment geochemistry as well as the environmental impacts of selected potentially toxic trace elements (PTE) were evaluated. Four components derived from the R-mode factor analysis of additive logratio-transformed data pointed to the combined influence of weathering of granitoids, sedimentary rocks and greenstone belts and gold mineralisation on the stream geochemistry. Although 13 PTE were enriched in the majority of the samples, only five elements (As, Cr, Cu, Pb and Ni) were likely to have adverse biological effects. Based on the geochemical maps, the areas susceptible to produce adverse biological effects due to As enrichments are solely drained by the greenstone belts, whereas enrichment of Pb was pronounced in areas of high population densities. The linear regression between enrichment factor (EF) and adverse effect indices (AEI) indicated that in order for Pb to pose threats to the benthic organisms, EF should be 4.5, whereas EF for sediment toxicity are 1 for Cu, Cr and Ni and 2 for As. Consequently, Cu, Cr, Ni, As and, to a lesser degree, Pb pose serious environmental threats to benthic organisms in southwestern Burkina Faso. The stream sediment geochemical data of this study constitute a baseline for assessing future environmental risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdolmaleki, M., Mokhtari, A. R., Akbar, S., Alipour-Asll, M., & Carranza, E. J. M. (2014). Catchment basin analysis of stream sediment geochemical data: incorporation of slope effect. Journal of Geochemical Exploration, 140, 96–103.

    Article  CAS  Google Scholar 

  • Aitchison, J. (1986). The statistical analysis of compositional data (416 pp). London: Chapman and Hall.

    Book  Google Scholar 

  • Albanese, S., De Vivo, B., Lima, A., & Cicchella, D. (2007). Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). Journal of Geochemical Exploration, 93, 21–34.

    Article  CAS  Google Scholar 

  • Armstrong-Altrin, J. S. (2009). Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Revista Mexicana de Ciencias Geológicas, 26, 764–782.

    Google Scholar 

  • Anderson, S. P., Dietrich, W. E., & Brimhall, G. H. (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: linkage between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin, 114, 1143–1158.

    Article  CAS  Google Scholar 

  • Baratoux, L., Metelka, V., Naba, S., Jessell, M. W., Grégoire, M., & Ganne, J. (2011). Juvenile Paleoproterozoic crust evolution during the Eburnean orogeny (∼2.2–2.0 Ga), western Burkina Faso. Precambrian Research, 191, 18–45.

    Article  CAS  Google Scholar 

  • Baraud, F., Leleyter, L., Lemoine, M., & Hamdoun, H. (2017). Cr in dredged marine sediments: anthropogenic enrichment, bioavailability and potential adverse effects. Marine Pollution Bulletin, 15, 303–308.

    Article  Google Scholar 

  • Beus, A. A., & Grigorian, S. V. (1977). Geochemical exploration methods for mineral deposits (287 pp). United States: N. p.

    Google Scholar 

  • Bellehumeur, C., Marcotte, D., & Jébrak, M. (1994). Multielement relationships and spatial structures of regional geochemical data from stream sediments, southwestern Québec, Canada. Journal of Geochemical Exploration, 51, 11–35.

    Article  CAS  Google Scholar 

  • Blaser, P., Zimmermann, S., Luster, J., & Shotyk, W. (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Science of the Total Environment, 249, 257–280.

    Article  CAS  Google Scholar 

  • Boher, M., Abouchami, W., Michard, A., Albarede, F., & Arndt, N. T. (1992). Crustal growth in West Africa at 2.1 Ga. Journal of Geophysical Research, 97, 345–369.

    Article  CAS  Google Scholar 

  • Bock, B., McLennan, S. M., & Hanson, G. N. (1998). Geochemistry and provenance of the Middle ordovician Austin Glen Member (Normanskill formation) and the Taconian Orogeny in New England. Sedimentology, 45, 635–655.

    Article  CAS  Google Scholar 

  • Borovec, Z. (1996). Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177, 237–250.

    Article  CAS  Google Scholar 

  • Bonham-Carter, G. F., & Goodfellow, W. D. (1986). Background correction to stream geochemical data using digitized drainage and geological maps: application to Selwyn Basin, Yukon and Northwest Territories. Journal of Geochemical Exploration, 25, 139–155.

    Article  CAS  Google Scholar 

  • Brantley, S. L., & White, A. F. (2009). Approaches to modeling weathered regolith. Reviews in Mineralogy and Geochemistry, 70, 435–484.

    Article  CAS  Google Scholar 

  • Bruland, K., Bertine, K., Koide, M., & Goldberg, E. (1974). History of metal pollution in Southern California Coastal Zone. Environmental Science & Technology, 8, 425–432.

    Article  CAS  Google Scholar 

  • Buccianti, A., & Grunsky, E. (2014). Compositional data analysis in geochemistry: are we sure to see what really occurs during natural processes? Journal of Geochemical Exploration, 141, 1–5.

    Article  CAS  Google Scholar 

  • Buccianti, A., Egozcue, J. J., & Pawlowsky-Glahn, V. (2008). Another look at the chemical relationships in the dissolved phase of complex river systems. Mathematical Geoscience, 40, 475–488.

    Article  CAS  Google Scholar 

  • Cao, L., & Cheng, Q. (2012). Quantification of anisotropic scale invariance of geochemical anomalies associated with Sn-Cu mineralization in Gejiu, Yunan Province, China. Journal of Geochemical Exploration, 122, 47–54.

    Article  CAS  Google Scholar 

  • Carranza, E. J. M. (2011). Analysis and mapping of geochemical anomalies using logratio transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110, 167–185.

    Article  CAS  Google Scholar 

  • Castaing, C., Billa, M., Milési, J. P., Thiéblemont, D., Le Métour, J., Egal, E., Donzeau, M., Guerrot, C., Cocherie, A., Chèvremont, P., Tegyey, M., Itard, Y., Zida, B., Ouédraogo, I., Koté, S., Kaboré, B. E., Ouédraogo, C., Ki, J. C., Zunino, C. (2003). Explanatory notes to the Geological and mining map of Burkina Faso at 1:1,000,000 scale.

  • CCME (Canadian Council of Ministers of the Environment). (2001). Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life. CCME EPC-98E. Prepared by Environment Canada, Guidelines Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines, Ottawa.

  • Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65, 175–194.

    Article  CAS  Google Scholar 

  • Cheng, Q., Jing, L., & Panahi, A. (2006). Principal component analysis with optimum order sample correlation coefficient for image enhancement. International Journal of Remote Sensing, 27, 3387–3401.

    Article  Google Scholar 

  • Clements, W. H. (1994). Benthic invertebrate community responsesto heavy metals in the Upper Arkansas River Basin; Colorado. Journal of the North American Benthological Society, 13, 30–44.

    Article  Google Scholar 

  • Comas-Cufi, M., & Thio-Henestrosa, S. (2011). CoDaPack 2.0: a stand-alone, multi-platform compositional software. In J. Egozcue, R. Tolosana-Delgado, & M. I. Ortego (Eds.), Co-DaWork 11: 4th International Workshop on Compositional Data Analysis.

    Google Scholar 

  • Cox, R., & Lowe, D. R. (1995). A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. Journal of Sedimentary Research, 65, 1–21.

    CAS  Google Scholar 

  • Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919–2940.

    Article  CAS  Google Scholar 

  • Darnley, A.G., Björklund, A., Bølviken, B., Gustavsson, N., Koval, P.V., Plant, J.A., Steenfelt, A., Tauchid, M. & Xie, X. (1995). A global geochemical database for environmental and resource management. Recommendations for international geochemical mapping, Final Report of IGCP 259, Earth Sciences Report 19, UNESCO Publishing, Paris.

  • Darwish, M. A. G. (2017). Stream sediment geochemical patterns around an ancient gold mine in the Wadi El Quleib area of the Allaqi region, south Eastern Desert of Egypt: Implications for mineral exploration and environmental studies. Journal of Geochemical Exploration, 175, 156–175.

    Article  CAS  Google Scholar 

  • Das, B. K., Al-Mikhlafi, A. S., & Kaur, P. (2006). Geochemistry of Mansar Lake sediments, Jammu, India: Implication for source-area weathering, provenance, and tectonic setting. Journal of Asian Earth Sciences, 26, 649–668.

    Article  Google Scholar 

  • De Vivo, B., Lima, A., Albenese, S., Cicchella, D., Fedele, L., & Frattini, P. (2004). Geochemical environmental maps of soils of Campania region urban areas, Italy. Geochimica et Cosmochimica Acta, 68, A535–A535.

    Google Scholar 

  • Dissanayake, C. B., & Chandrajith, R. (1999). Medical geochemistry of tropical environments. Earth-Science Reviews, 47, 219–258.

    Article  CAS  Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

    Article  Google Scholar 

  • Embui, V. F., Omang, B. O., Che, V. B., Nforba, M. T., & Suh, E. C. (2013). Gold grade variation and stream sediment geochemistry of the Vaimba-Lidi drainage system, northern Cameroon. Natural Science, 5, 282–290.

    Article  Google Scholar 

  • Evans, C. D., Davies, T. D., Wigington, P. J., Tranter, M., & Kretser, W. A. (1996). Use of factor analysis to investigate processes controlling the chemical composition of four streams in the Adirondack Mountains, New York. Journal of Hydrology, 185, 297–316.

    Article  CAS  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols: with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  CAS  Google Scholar 

  • Feybesse, J. L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J.-L., Milési, J.-P., & Bouchot, V. (2006). The Paleoproterozoic Ghanaian province: geodynamic model and ore controls, including regional stress modeling. Precambrian Research, 149, 149–196.

    Article  CAS  Google Scholar 

  • Filzmoser, P., & Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geoscience, 40, 233–248.

    Article  Google Scholar 

  • Filzmoser, P., Hron, K., & Riemann, C. (2005). Principal component analysis for compositional data with outliers. Environ metrics, 20, 621–632.

    Google Scholar 

  • Filzmoser, P., Ruiz-Gazen, A., & Thomas-Agnan, C. (2014). Identification of local multivariate outliers. Statistical Papers, 55, 29–47.

    Article  Google Scholar 

  • Franceschi, G., Ouédraogo, B. (1982). Prospection minière détaillée sur l'indice Pb-Zn-Ag dans le secteur de Perkoa (NW Réo). Rap. tech. 1 and 2, (UPV 74/004, Haute-Volta, BUVOGMIPNUD, inédit).

  • Freund, J. G., & Petty, J. T. (2007). Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. Environmental Management, 39, 707–720.

    Article  Google Scholar 

  • Johnson, C., Breward, N., Ander, E., & Ault, L. (2005). G-BASE: baseline geochemical mapping of Great Britain and Northern Ireland. Geochemistry: Exploration, Environment, Analysis, 5, 347–357.

    Google Scholar 

  • Kaboré, J., Mathez, G., Ouédraogo, M. F., & Sattran, V. (1989). Prospection minière dans le centre et le nord-ouest du Burkina Faso. Journal of Geochemical Exploration, 32, 429–435.

    Article  Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.

    Article  Google Scholar 

  • Kane, V. E., Begovich, C. L., Butz, T. R., & Myers, D. E. (1982). Interpretation of regional geochemistry using optimal interpolation parameters. Computational Geosciences, 8, 117–135.

    Article  CAS  Google Scholar 

  • Hayashi Ken, I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115–4137.

    Article  Google Scholar 

  • He, Z. Y., Xu, X. S., Zou, H. B., Wang, X. D., & Yu, Y. (2010). Geochronology, petrogenesisand metallogeny of Piaotang granitoids in the tungsten deposit region of South China. Geochemical Journal, 44, 299–313.

    Article  CAS  Google Scholar 

  • Hein, K. A. A., Morel, V., Kagone, O., Kiemde, F., & Mayes, K. (2004). Birimian lithological succession and structural evolution in the Goren segment of the Boromo-Goren Greenstone Belt, Burkina Faso. Journal of African Earth Sciences, 39, 1–23.

    Article  Google Scholar 

  • Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., & Finkel, R. C. (1997). The soil production function and landscape equilibrium. Nature, 388, 358–361.

    Article  CAS  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hirdes, D., Davies, D., Lüdtke, G., & Konan, G. (1996). Two generations of Birimian (Paleoproterozoic) volcanic belts in northeastern Côte d’Ivoire (West Africa): consequences for the Birimian controversy. Precambrian Research, 80, 173–191.

    Article  CAS  Google Scholar 

  • Huot, D., Sattran, V., & Zida, P. (1987). Gold in Birimian greenstone belts of Burkina Faso, West Africa. Economic Geology, 82, 2033–2044.

    Article  CAS  Google Scholar 

  • Galan, E., Gomez-Ariza, J. L., Gonzalez, I., Fernandez-Caliani, J. C., Morales, E., & Giraldez, I. (2003). Heavy metal portioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409–421.

    Article  CAS  Google Scholar 

  • Garcia, D., Coehlo, J., & Perrin, M. (1991). Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). European Journal of Mineralogy, 3, 401–414.

    Article  CAS  Google Scholar 

  • Garrels, R. M., & Mackenzie, F. T. (1971). Evolution of sedimentary rocks. New York: Norton 387 pp.

    Google Scholar 

  • Garrett, R. G., Reimann, C., Smith, D. B., & Xie, X. (2008). From geochemical prospecting to international geochemical mapping: a historical review. Geochemistry: Exploration, Environment, Analysis, 8, 205–217.

    CAS  Google Scholar 

  • Ghezelbash, R., Mghsoudi, A., & Carranza, E. J. M. (2019). Mapping of single- and multi element geochemical indicators based on catchment basin analysis: application of fractal method and unsupervised clustering methods. Journal of Geochemical Exploration, 199, 90–104.

    Article  CAS  Google Scholar 

  • Girty, G. H., Ridge, D. L., Knaack, C., Johnson, D., & Al-Riyami, R. K. (1996). Provenance and depositional setting of paleozoic chert and argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, 107–118.

    CAS  Google Scholar 

  • Glasby, G. P., Szefer, P., Geldon, J., & Warzocha, J. (2004). Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Science of the Total Environment, 330, 249–269.

    Article  CAS  Google Scholar 

  • Gomez, A.A., Valenzuela, J.L.G., Aguayo, S.S., Meza, D.F., Ramirez, J.H. & Ochoa, G.O. (2007). Chemical partitioning of sediment contamination by heavy metals in the San Pedro River, Sonora, Mexico. Chemical Speciation and Bioavailability 19, 25–35.

  • Grunsky, E. C., Mueller, U. A., & Corrigan, D. (2014). A study of the lake sediment geochemistry of the Melville Peninsula using multivariate methods: applications for predictive geological mapping. Journal of Geochemical Exploration, 141, 15–41.

    Article  CAS  Google Scholar 

  • Grunsky, E. C., Drew, L. J., & Stuphin, D. M. (2009). Process recognition in multi-element soil and stream-sediment geochemical data. Applied Geochemistry, 24, 1602–1616.

    Article  CAS  Google Scholar 

  • Laboy-Nieves, E. (2009). Environmental profile and management issues in an estuarine ecosystem: a case study from Jobos Bay, Puerto Rico. In: Laboy-Nieves, Eddie, Fred C., Schaffner, Ahmed Abdelhadi, Matheus, F.A., Goosen (Eds), Environmental management, sustainable development and human Health. CRC Press, Leiden-The Netherlands, pp. 361–398.

  • Leech, A. F., & Thornton, I. (1987). Trace elements in soils and pasture herbage on farms with bovine hypocupraemia. The Journal of Agricultural Science, 108, 591–597.

    Article  CAS  Google Scholar 

  • Levinson, A. A. (1974). Introduction to exploration geochemistry (2nd ed.). Applied Publishing.

  • Liao, Q.-L., Evans, J. L., Gu, X., Fan, D.-F., Jin, Y., & Wang, H. (2007). A regional geochemical survey of soils in Jiangsu Province, China: Preliminary assessment of soil fertility and soil contamination. Geoderma, 142, 18–28.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhou, K., & Cheng, Q. (2017). A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Computational Geosciences, 105, 139–147.

    Article  CAS  Google Scholar 

  • Liu, B., Wang, Y., Su, X., & Zheng, H. (2013). Elemental geochemistry of northern slope sediments from the South China Sea: implications for provenance and source area weathering since Early Miocene. Chemie der Erde, 73, 1–7.

    Article  Google Scholar 

  • Liu, Z. F., Wang, H., Hantoro, W. S., Sathiamurthy, E., Colin, C., Zhao, Y. L., & Li, J. (2012). Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chemical Geology, 291, 1–12.

    Article  CAS  Google Scholar 

  • Lu, X. W., Wang, L. J., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173, 744–749.

    Article  CAS  Google Scholar 

  • Markwitz, V., Hein, K. A. A., & Miller, J. (2014). Compilation of West African mineral deposits: spatial distribution and mineral endowment. Precambrian Research, 274, 61–81.

    Article  Google Scholar 

  • Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.

    Article  CAS  Google Scholar 

  • Martinez, J., Liamas, J., de Miguel, E., Rey, J., & Hidalgo, M. C. (2007). Determination of the geochemical background in a metal mining site: example of the mining district of Linares (South Spain). Journal of Geochemical Exploration, 94, 19–29.

    Article  CAS  Google Scholar 

  • McQueen, K., Sheard, M., Keeling. J., Lintern, M., Hou, B. & Hill, S. (2008). Identifying geochemical anomalies. A guide for mineral exploration through the regolith of the central Gawler Craton, South Australia CRC LEME, Bentley, WA, 1–7.

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approach to sedimentation, provenance and tectonics, Special Paper 285. Geological Society America, 21–40.

  • Milési, J. P., Ledur, P., Feybesse, J. L., Dommanget, A., & Marcoux, E. (1992). Early Proterozoic ore deposits and tectonics of the Birimian orogenic belt, West Africa. Precambrian Research, 58, 305–344.

    Article  Google Scholar 

  • Mertz, W. (1986). Trace elements in human and animal nutrition. US Department of Agriculture. Academic, Orlando (2 volumes).

  • Metelka, V., Baratoux, L., Naba, S., & Jessell, W. M. (2011). A geophysically constrained lithostructural analysis of the eburnean greenstone belts and associated granitoid domains, western Burkina Faso. Precambrian Research, 190, 48–69.

    Article  CAS  Google Scholar 

  • Muñoz-Barbosa, A., Gutiérrez-Galindo, E. A., Daesslé, L. W., Orozco-Borbón, M. V., & Segovia-Zavala, J. A. (2012). Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, northwest coast of Baja California, México. Marine Pollution Bulletin, 64, 405–409.

    Article  Google Scholar 

  • Naimo, D., Adamo, P., Imperato, M., & Stanzione, D. (2005). Mineralogy and geochemistry of a marine sequence, Gulf of Salerno, Italy. Quaternary International, 140–141, 53–63.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  CAS  Google Scholar 

  • Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical processes affecting alkalis and alkali earths during continental weathering. Geochimica et Cosmochimica Acta, 44, 1659–1666.

    Article  CAS  Google Scholar 

  • Nguyen, T. T. (2018). Use of Moran’s I and robust statistics to separate geochemical anomalies in Jiurui area (Southeast China). Bulletin of Mineral Research and Exploration, 156, 179–192.

    Google Scholar 

  • Nguyen, T. T., Vu, D. T., Trinh, L. H., & Nguyen, T. L. H. (2016). Spatial cluster and outlier identification of geochemical association of elements: a case study in Juirui copper mining area. Bulletin of Mineral Research and Exploration, 153, 159–167.

    Google Scholar 

  • Ohta, A., Imai, N., Terashima, S., & Tachibana, Y. (2005). Application of multi-element statistical analysis for regional geochemical mapping in Central Japan. Applied Geochemistry, 20, 1017–1037.

    Article  CAS  Google Scholar 

  • Ouédraogo, C. (2006). Synthèse géologique de la Région Ouest du Burkina Faso, Programme VRO, SOFRECO-SAWES: Bobo-Dioulasso, Burkina Faso.

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2017). Multifractal analysis of stream sediment geochemical data: Implications for hydrothermal nickel prospection in an arid terrain, eastern Iran. Journal of Geochemical Exploration, 181, 305–317.

    Article  CAS  Google Scholar 

  • Pawlowsky-Glahn, V., Egozcue, J.J. & Tolosana-Delgado, R. (2015). Modelling and analysis of compositional data. 4. John Wiley & Sons, pp. 252.

  • Pirajno, F. (1992). Hydrothermal mineral deposits. Principles and fundamental concepts for the exploration geologist. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag. Price DM 248.00 (hard covers). 709 pp.

  • Plant, J. A., Klaver, G., Locutura, J., Salminen, R., Vrana, K., & Fordyce, F. M. (1997). The forum of European geological surveys geochemistry task group inventory 1994–1996. Journal of Geochemical Exploration, 59, 123–146.

    Article  CAS  Google Scholar 

  • Salomons, W. (1998). Biogeodynamics of contaminated sediments and soils: perspectives for future research. Journal of Geochemical Exploration, 62, 37–40.

    Article  CAS  Google Scholar 

  • Salminen, R., Kashabano, J., Myumbilwa, Y., Petro, F. N., & Partanen, M. (2008). Indications of deposits of gold and platinum group elements from a regional geochemical stream sediment survey in NW Tanzania. Geochemistry: Exploration, Environment, Analysis, 8, 313–322.

    CAS  Google Scholar 

  • Sajn, R. (2006). Factor analysis of soil and attic-dust to separate mining and metallurgy influence, Meza Valley, Slovenia. Mathematical Geology, 38, 735–747.

    Article  CAS  Google Scholar 

  • Salvarredy-Aranguren, M. M., Probst, A., Roulet, M., & Isaure, M. P. (2008). Contamination of surface waters by mining wastes in the Milluni valley (Cordillera Real, Bolivia): mineralogical and hydrological influences. Applied Geochemistry, 23, 299–324.

    Article  Google Scholar 

  • Schiff, K. C., & Weisberg, S. B. (1999). Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Marine Environmental Research, 48, 161–176.

    Article  CAS  Google Scholar 

  • Segura, R., Arancibia, V., Zuniga, M. C., & Pasten, P. (2006). Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. Journal of Geochemical Exploration, 91, 71–80.

    Article  CAS  Google Scholar 

  • Shahrestani, S., Mokhtari, A. R., Carranza, E. J. M., & Hossein-Dinani, H. (2019). Comparison of efficiency of techniques for delineating uni-element anomalies from stream sediment geochemical landscapes. Journal of Geochemical Exploration, 197, 184–198.

    Article  CAS  Google Scholar 

  • Shao, L., Cao, L., Pang, X., Jiang, T., Qiao, P., & Zhao, M. (2016). Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry, Geophysics, Geosystems, 17, 255–269.

    Article  CAS  Google Scholar 

  • Soto-Jimenez, M. F., & Paez-Osuna, F. (2001). Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlan Harbor (SE Gulf of California). Estuarine, Coastal and Shelf Science, 53, 259–274.

    Article  CAS  Google Scholar 

  • Sun, X., Zheng, Y., Wang, C., Zhao, Z., & Geng, X. (2016). Identifying geochemical anomalies associated with Sb–Au–Pb–Zn–Ag mineralization in north Himalaya, southern Tibet. Ore Geology Reviews, 73, 1–12.

    Article  Google Scholar 

  • Sugitani, K., Yamashita, F., Nagaoka, T., Yamamoto, K., Minamie, M., Mimurad, K., & Suzuki, K. (2006). Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Research, 147, 124–147.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 330–341.

    Article  CAS  Google Scholar 

  • Taylor, R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Review in Geophysics, 33, 241–265.

    Article  Google Scholar 

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 23, 2198–2213.

    Article  CAS  Google Scholar 

  • Thornton, I. (1983). Soil–plant–animal interactions in relation to the incidence of trace element disorders in grazing livestock. In N. F. Suttle, R. G. Gunn, W. M. Allen, K. A. Linklater, & G. Wiener (Eds.), Trace elements in animal production and veterinary practice (pp. 39–49). Edinburgh: British Society of Animal Production.

    Google Scholar 

  • Tukey, J. W. (1976). Exploratory data analysis. 1977. Massachusetts: Addison-Wesley.

    Google Scholar 

  • Towett, E. K., Shepherd, K. D., Tondoh, J. E., Winowiecki, L. A., Lulseged, T., Nyambura, M., Sila, A., Vagen, T. G., & Cadisch, G. (2015). Total elemental composition of soils in sub-Saharan Africa and relationship with soil forming factors. Geoderma Regional, 5, 157–168.

    Article  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17, 185–206.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background – Concept and reality. Science of the Total Environment, 350, 12–27.

    Article  CAS  Google Scholar 

  • Reimann, C., Birke, M., Demetriades, A., Filzmoser, P. & O'Connor, P. (2014). Chemistry of Europe's Agricultural Soils—Part A: Methodology and Interpretation of the GEMAS Data Set. Geologisches Jahrbuch (Reihe B 102). Schweizerbarth, Hannover 978–3–510-96847-3.

  • Reimann, C., & de Caritat, P. (2017). Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil. Sci. Total Environment, 578, 633–648.

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science & Technology, 34, 5084–5091.

    Article  CAS  Google Scholar 

  • Rose, A. W., Hawkes, H. E., & Webb, J. S. (1979). Geochemistry in mineral exploration (2nd ed.). London: Academic Press.

    Google Scholar 

  • Roussiez, V., Ludwig, W., Probst, J. L., & Monaco, A. (2005). Background levels of heavy metals in surficial sediments of the Gulf of lions (NW Mediterranean): An approach based on 133Cs normalization and lead isotope measurements. Environmental Pollution, 138, 167–177.

    Article  CAS  Google Scholar 

  • Roy, D., & Roser, B. P. (2012). Geochemistry of the tertiary sequence in the Shahbajpur−1 well, Hatia trough, Bengal Basin, Bangladesh: Provenance, source weathering and province affinity. Journal of Earth Science, 7, 1–13.

    Google Scholar 

  • Vital, H., & Stattegger, K. (2000). Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology, 168, 151–168.

    Article  CAS  Google Scholar 

  • Wallens, J. & Compaoré, N.F. (2003). Renforcement de la Capacité de Gestion des Ressources en eau dans l’Agriculture Moyennant des Outils de Suivi-Evaluation-GEeau, Rapport Annuel N1 (Décembre 2001-Novembre 2002) ; Direction Régionale de ‘Agriculture, de l’Hydraulique et des Ressources Halieutiques des Hauts Bassins : Bobo-Dioulasso, Burkina Faso.

  • Wedepohl, K. H., & Hartmann, G. (1994). The composition of the primitive upper earth’s mantle. In: Kimberlites, related rocks and mantle xenoliths. Meyer, H.OA., Leonardos, O.H. (Ed). Companhia de Perquisa de Recursos Minerais, Rio de Janeiro, 1, 486–495.

    Google Scholar 

  • Wei, G., Liu, X. H., Liu, Y., Shao, L., & Liang, X. (2006). Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21, 4214–4225.

    Article  Google Scholar 

  • White, A. F., Blum, A. E., Marjorie, S., Schulz, M. S., Bullen, T. D., Harden, J. W., & Peterson, M. L. (1996). Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates. Geochimica et Cosmochimica Acta, 60, 2533–2550.

    Article  CAS  Google Scholar 

  • WHO. (1993). Guidelines for drinking water quality: Vol. 2. WHO, Geneva.

  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta, 5, 2401–2416.

    Article  Google Scholar 

  • Xiao, F., Chen, J., Hou, W., Wang, Z., Zhou, Y., & Erten, O. (2018). A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. Journal of Geochemical Exploration, 189, 122–137.

    Article  CAS  Google Scholar 

  • Xin, L., Meng, G., Pan, H., Cheng, Z., Yao, W., & Cheng, X. (2019). Continental-scale stream sediment geochemical mapping in southern China: an insight into surface processes and tectonic framework. Journal of Geochemical Exploration, 207, 1–11.

    Google Scholar 

  • Xu, Y., & Cheng, Q. (2001). A fractal filtering technique for processing regional geochemical maps for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 1, 147–156.

    CAS  Google Scholar 

  • Xuejing, X., & Xueqiu, W. (1991). Geochemical exploration for gold: a new approach to an old problem. Journal of Geochemical Exploration, 40, 25–48.

    Article  Google Scholar 

  • Yousefi, M., Carranza, E. J. M., & Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration, 128, 88–96.

    Article  CAS  Google Scholar 

  • Yuan, G. L., Sun, T. H., Han, P., & Li, J. (2013). Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China. Journal of Geochemical Exploration, 130, 15–21.

    Article  CAS  Google Scholar 

  • Zhang, C., Manheim, F. T., Hinde, J., & Grossman, J. N. (2005). Statistical characterization of a large geochemical database and effect of sample size. Applied Geochemistry, 20, 1857–1874.

    Article  CAS  Google Scholar 

  • Zibret, G., & Sajn, R. (2010). Hunting for geochemical associations of elements: factor analysis and self-organising maps. Mathematical Geoscience, 42, 681–703.

    Article  CAS  Google Scholar 

  • Zuo, R., Carranza, E. J. M., & Wang, J. (2016). Spatial analysis and visualization of exploration geochemical data. Earth-Science Reviews, 158, 9–18.

    Article  CAS  Google Scholar 

  • Zuzolo, D., Cicchella, D., Albanese, S., Lima, A., Zuo, R., & De Vivo, B. (2018). Exploring uni-element geochemical data under a compositional perspective. Applied Geochemistry, 91, 174–184.

    Article  CAS  Google Scholar 

  • Zwolsman, J. J. G., Van Eck, G. T. M., & Burger, G. (1996). Spatial and temporal distribution of trace metals in sediments from the Scheldt Estuary, Southwest Netherlands. Estuarine, Coastal and Shelf Science, 43, 55–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their thanks to the geologists from BUMIGEB and BRGM for their technical assistance. Comments and suggestions from an anonymous reviewer greatly improved the early version of the manuscript.

Funding

This project was funded by the Mining Sector Support Project (PADSEM) and the World Bank (IDA N°H693 BF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aboubakar Sako.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sako, A., Nimi, M., Sawadogo, S. et al. Occurrence, behaviour and environmental risk assessment of trace metals in stream sediments from southwestern Burkina Faso, West Africa. Environ Monit Assess 193, 133 (2021). https://doi.org/10.1007/s10661-021-08849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08849-x

Keywords

Navigation