Skip to main content

Advertisement

Log in

Ecotoxicity of malathion pesticide and its genotoxic effects over the biomarker comet assay in Daphnia magna

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Malathion is a highly toxic organophosphate insecticide, being one of the most widely used in the world and is generally used for insect control in food production. Thus, ecotoxicological studies have been used to verify its toxic effects on aquatic organisms, such as Daphnia magna and biomarkers, as the comet assay. The comet assay is a microgel electrophoresis method for the detection and quantification of DNA strand breaks in individual cells. Cells were obtained from Daphnia magna after disaggregation of newborn organisms, exposed at concentrations of 0.23 μg L−1 and 0.47 μg L−1 for 48 h. Malathion has shown to cause damage to DNA of the exposed organisms. It was also observed the need of further studies to standardize the comet assay technique for Daphnia magna, once methodologies used present several differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altshuler, I., Demiri, B., Xu, S., Constantin, A., Yan, N., & Cristescu, M. (2011). An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integrative and Comparative Biology, 51, 623–633.

    Article  CAS  Google Scholar 

  • Associação Brasileira de Normas Técnica – ABNT 12.713. Aquatic ecotoxicology –acute toxicity – test with Daphnia spp (Cladocera, Crustacea), isbn 987–85–07-06243-1, 20–23, Rio de Janeiro, 2016.

  • Barata, C., Solayan, A., & Porte, C. (2004). Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquatic Toxicology, 66, 125–139.

    Article  CAS  Google Scholar 

  • Blasiak, J., Jaloszynski, P., Trzeciak, A., & Szyfter, K. (1999). In vitro studies on the genotoxicity of the organophosphorus insecticide malathion and its two analogues. Mutation Research, 445, 275–283.

    Article  CAS  Google Scholar 

  • Bownik, A. (2017). Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Science of the Total Environment, 601-602, 194–205.

    Article  CAS  Google Scholar 

  • Brianezi, G., Camargo, J., & Miot, H. (2009). Desenvolvimento e validação de técnica quantitativa de análise de imagem para avaliação do teste do Cometa corado pela prata. Jornal Brasileiro de Patologia e Medicina Laboratorial, 45(4), 325–334.

    Article  Google Scholar 

  • Cavalcanti, N., Aguiar, A., Lima, A., & Lima, S. (2016). Intoxicação por organofosforados: tratamento e metodologias analíticas empregadas na avaliação da reativação e inibição da acetilcolinesterase. Revista Virtual de Química, 8(3), 739–766.

    Google Scholar 

  • Collins, A., Dobson, V. L., Dusinska, M., Kennedy, G., & Stetina, R. (1997). The comet assay: what can it really tell us? Mutation Research, 375, 183–193.

    Article  CAS  Google Scholar 

  • Damásio, J., Guilhermino, L., Soares, A., Riva, M. C., & Barata, C. (2007). Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. Chemosphe, 70, 74–82.

    Article  Google Scholar 

  • De Deus, RM.; Bakonyi, S. (2012) O impacto da agricultura sobre o meio ambiente. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental. v.7, n° 7, 1306–1315.

  • Dearfield, K. L., Stack, F., Quest, J., Whiting, J., & Waters, M. (1993). A survey of EPA/OPP and open literature data on selected pesticide chemicals tested for mutagenicity. Mutation Research, 297, 197–233.

    Article  CAS  Google Scholar 

  • Depledge, M. H. (1998). The ecotoxicological significance of genotoxicity in marine invertebrates. Mutation Research, 23, 109–122.

    Article  Google Scholar 

  • Guilhermino, L., Lacerda, M. N., Nogueira, A., & Soares, A. (2000). In vitro and in vivo inhibition of Daphnia magna acetylcolinesterase by surfactant agents: possible implications for contamination biomonitoring. The Science of the Total Environment, 247, 137–141.

    Article  CAS  Google Scholar 

  • Heckmann, L., Sibly, R., Connon, R., Hooper, H., Hutchinson, T., Maund, S., Hill, C., Bouetard, A., & Callaghan, A. (2008). Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna. Genome Biology, 9, 40.0–40.13.

    Article  Google Scholar 

  • Hongcui, L., Bingqiang, Y., & Shaonan, L. (2012). Altered quantities and in vivo activities of cholinesterase from Daphnia magna in sub-lethal exposure to organophosphorus insecticides. Ecotoxicology and Environmental Safety, 80, 118–125.

    Article  Google Scholar 

  • Jemec, A., Drobne, D., Tisler, T., Trebse, P., Ros, M., & Sepcic, K. (2007). The applicability of acetylcholinesterase and glutathione S-transferase in Daphnia magna toxicity test. Comparative Biochemistry and Physiology, Part C, 144, 303–309.

    Google Scholar 

  • Kapczinski, F., Santin A., Andreazza, A., Frey, N., Erdtmann, B., Cereser, M., Salvador, M., Rombaldi, F., Costa, C.S. (2004) Avaliação de Danos Oxidativos ao DNA de Pacientes Portadores de Transtorno do Humor Bipolar em Comparação com Controles Comunitários, Revista psiquiatria clínica, São Paulo.

  • Kumar, R., Nagpure, N., Kushwaha, B., Srivastava, S., & Lakra, W. (2010). Investigation of the genotoxicity of malathion to freshwater teleost fish Channa punctatus (Bloch) using the micronucleus test and comet assay. Environmental Contamination and Toxicology., 58, 123–130.

    Article  CAS  Google Scholar 

  • Lan, P., & Gray, J. (2003). Predicting effects of toxic chemicals in the marine environment. Marine Pollution Bulletin, 42(3), 169–173.

    Google Scholar 

  • Lee, R., & Steinert, S. (2001). Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutation Research, 544, 43–64.

    Article  Google Scholar 

  • Lee, S., Kim, S., & Choi, J. (2009). Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environmental Toxicology and Pharmacology, 28, 86–91.

    Article  CAS  Google Scholar 

  • Mangas-Ramirez, E., Sarma, S., & Nandini, S. (2004). Combined effects of algal (Chlorella vulgaris) density and ammonia concentration on the population dynamics of Ceriodaphnia dubia and Moina macropoca (Cladocera). Ecotoxicology and Environmental Safety, 51, 216–222.

    Article  Google Scholar 

  • Nagato, E., Simpson, A., & Simpson, M. (2016). Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A. Aquatic Toxicology, 170, 175–186.

    Article  CAS  Google Scholar 

  • Park, S., & Choi, J. (2007). Cytotoxicity, genotoxicity and ecotoxicity assay using human cell and environmental species for the screening of the risk from pollutant exposure. Environmental International, 33, 817–822.

    Article  CAS  Google Scholar 

  • Parrella, A., Lavorgna, M., Criscuolo, E., Russo, C., & Isidori, M. (2015). Eco-genotoxicity of six anticancer drugs using comet assay in daphnids. Journal of Hazardous Materials, 286, 573–580.

    Article  CAS  Google Scholar 

  • Phan, B., Miranda, A., Allinson, G., & Nugegoda, D. (2017). Evaluating the non-lethal effects of organophosphorous and carbamate insecticides on the yabby (Cherax destructor) using cholinesterase (AChE, BChE), Glutathione S-Transferase and ATPase as biomarkers. Ecotoxicology and Environmental Safety, 143, 283–288.

    Article  Google Scholar 

  • Printes, L., & Callaghan, A. (2004). A comparative study on the relationship between acetylcholinesterase activity and acute toxicity in Daphnia magna exposed to anticholinesterase insecticides. Environmental Toxicology and Chemistry, 23, 1241–1247.

    Article  CAS  Google Scholar 

  • Saler, S., Saglan, N. (2005) Acute toxicity of Malathion on Daphnia magna Straus,1820. Journal of Biological Sciences v.5, 297–299.

    Article  Google Scholar 

  • Secretaria de estado da saúde do Paraná (2019) Vigilância da saúde de populações expostas a agrotóxicos no paraná. Curitiba.

    Google Scholar 

  • Singh, N., Maccoy, M., Tice, R., & Schneider, E. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191.

    Article  CAS  Google Scholar 

  • Srivastava, A., & Singh, D. (2020). Assessment of malathion toxicity on cytophysiological activity. DNA damage and antioxidant enzymes in root of Allium cepa model. Scientific Reports., 10(886), 1–10.

    Google Scholar 

  • Stein, R. J., Lopes, S. I. G., & Fett, J. P. (2014). Iron toxicity in field-cultivated rice: contrasting tolerance mechanisms in distinct cultivars. Theoretical and Experimental. Plant Physiology, 26, 135–146.

    CAS  Google Scholar 

  • Trac, N., Andersen, O., & Palmqvist, A. (2016). Deciphering mechanisms of malathion toxicity under pulse exposure of the freshwater cladoceran Daphnia magna. Environmental Toxicology and Chemistry, 35, 394–403.

    Article  CAS  Google Scholar 

  • U.S Environmental Protection Agency (USEPA) (2009) Registration Eligibility Decision (RED) for Malathion Revised. U.S, Office of Prevention, Pesticides and Toxic Substances. Washington, DC.

  • Van Der Oost, R., Beyer, J., & Vermeulen, N. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Envirnmental Toxicology and Pharmacology, 13(57–149), 2003.

    Google Scholar 

  • Wild, D. (1975). Mutagenicity studies on organophosphorus insecticides. Mutation Research, 32, 133–115.

    Article  CAS  Google Scholar 

  • Zepeda-Arce, R., Trinidad, A., Diaz, I., Ochoa, I., Garcia, A., Moreno, J., Vivanco, B., Heredia, M., Villegas, G., & Hernandez, Y. (2017). Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environmental Toxicology, 32, 1754–1764.

    Article  CAS  Google Scholar 

  • Zucker, E. (1986) Hazard evaluation division standard evaluation precedure ecological risk assessment. EPA, The United States.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís F. O. Knapik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knapik, L.F.O., Ramsdorf, W. Ecotoxicity of malathion pesticide and its genotoxic effects over the biomarker comet assay in Daphnia magna. Environ Monit Assess 192, 264 (2020). https://doi.org/10.1007/s10661-020-8235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8235-0

Keywords

Navigation