Skip to main content
Log in

Evaluation of the health risks linked to two swimming pools regularly frequented from the city of Yaounde in Cameroon (Central Africa)

Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The study highlights the presence of pathogenic strains of microorganisms in two swimming pools, highly frequented in the city of Yaounde. Thus, the water samples from these swimming pools have undergone physicochemical and biological treatments using conventional techniques. Three groups of microorganisms (Bacteria, Protozoa, and Helminths) were identified and quantified in these swimming pools with weakly acidic waters (6.79 ± 0.35) with an average temperature of 26.63 ± 0.53 °C and suspended matter ranging from 2 to 150 mg.l−1. The total bacterial load varies between 8 × 103 and 6000 × 103 CFU/100 ml. It consists of mesophilic aerobic heterotrophic bacteria, fecal coliforms, total coliforms, fecal streptococci, Staphylococcus aureus, and Pseudomonas aeruginosa. Protozoan cysts and oocysts range from 122 to 505 per liter of water. These values are slightly lower for helminth eggs and larvae (0 to 108 eggs and larvae/l). In both swimming pools, significant correlations were observed between some abiotic and biotic parameters. The waters of the studied swimming pools are subject to fecal pollution. Swimmers would therefore be exposed to biological contaminations, responsible for pathologies. The most common diseases are linked to gastroenteritis (diarrhea), but infections of all kinds may be overgrown (conjunctivitis, ear infections, dermatitis, respiratory infections).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA. (1985). Standard method for the examination of water and wastewater. 16th Edition, American Public Health Association, Washington DC.

  • A.R.S. (Agence Régionale de Santé). (2012). Essentiel pour bien entretenir votre piscine. Pays de la Loire France, 33p.

  • Abdul Majid, M. A., Mahboob, T., Mong, B. G. J., Jaturas, N., Richard, R. L., Tian-Chye, T., & Nissapatorn, V. (2017). Pathogenic waterborne free-living amoebae: An update from selected Southeast Asian countries. PLoS One, 12(2), e0169448. https://doi.org/10.1371/journal.pone.0169448.

    Article  CAS  Google Scholar 

  • Aboulfotoh Hashish, N. M., Aleya, A. G. A., & Amira, E. K. A. (2017). Pseudomonas aeruginosa in swimming pools. Cogent Environmental Science, 3(1328841), 1–8. https://doi.org/10.1080/23311843.2017.1328841.

    Article  CAS  Google Scholar 

  • Adamska, M. (2015). Molecular characterization of Cryptosporidium and Giardia occurring in natural water bodies in Poland. Parasitology Research, 114(2), 687–692. https://doi.org/10.1007/s00436-014-4234-9.

    Article  Google Scholar 

  • Ajeagah, G. A., Njine, T., Bilong Bilong, C. F., Foto, S. M., Wouafo, N. M., Nola, M., Di, G. G. D., & Huw, S. (2010). Seasonal distribution of enteric opportunistic cryptosporidium spp. Oocysts and Giardia spp. Cysts in a tropical water basin, Cameroon. Waters, 2, 44–57.

    Google Scholar 

  • Ball, P. (2017). Water is an active matrix of life for cell and molecular biology. PNAS, 114(51), 13327–13335. https://doi.org/10.1073/pnas.1703781114.

    Article  CAS  Google Scholar 

  • Barbot, E., & Moulin, P. (2018). Swimming pool water treatment by ultrafiltration–adsorption process. Journal of Membrane Science, 314, 50–57.

    Article  Google Scholar 

  • Burlion, N., Schrooten, D. & Charlier, G. (2004). Analyse des technologies existantes en matière de désinfection des piscines et proposition d’un manuel de conseils aux gestionnaires de ces établissements. Rapport final, 146p.

  • Chalmers, R. M., McCarthy, N., Barlow, K. L., & Stiff, R. (2018). An evaluation of health protection practices for the investigation and management of Cryptosporidium in England and Wales. Journal of Public Health, 40(1), 114–120. https://doi.org/10.1093/pubmed/fdw143.

    Article  CAS  Google Scholar 

  • Dang, H., & Lovell, C. R. (2016). Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biology Reviews, 80(1), 91–138. https://doi.org/10.1128/MMBR.00037-15.

    Article  CAS  Google Scholar 

  • DeFlorio-Barker, S., Wing, C., Jones, R. M., & Dorevitch, S. (2018). Estimate of incidence and cost of recreational waterborne illness on United States surface waters. Environmental Health, 17, 3. https://doi.org/10.1186/s12940-017-0347-9.

    Article  Google Scholar 

  • Dupuy, M., Berne, F., Herbelin, P., Binet, M., Berthelot, N., Rodier, M. H., Soreau, S., & Héchard, Y. (2014). Sensitivity of free-living amoeba trophozoites and cysts to water disinfectants. International Journal of Hygiene and Environmental Health, 217(2-3), 335–339. https://doi.org/10.1016/j.ijheh.2013.07.007.

    Article  CAS  Google Scholar 

  • Efstratiou, A., Ongerth, J. E., & Karanis, P. (2017). Waterborne transmission of protozoan parasites: Review of worldwide outbreaks—An update 2011–2016. Water Research, 114, 14–22. https://doi.org/10.1016/j.watres.2017.01.036.

    Article  Google Scholar 

  • Ekopai, J. M., Lubowa Musisi, N., Onyuth, H., Namara, B. G., & Sente, C. (2017). Determination of bacterial quality of water in randomly selected swimming pools in Kampala City, Uganda. New Journal of Science, 2017, 7. https://doi.org/10.1155/2017/1652598.

    Article  Google Scholar 

  • Fadaei, A., & Amiri, M. (2015). Comparison of chemical, biological and physical quality assessment of indoor swimming pools in Shahrekord City, Iran, in 2013. Global Journal of Health Science, 7(3), 240–248. https://doi.org/10.5539/gjhs.v7n3p240.

    Article  Google Scholar 

  • Fotseu Kouam, A. L., & Ajeagah, G. A. (2019). Dissemination of the resistant forms of intestinal worms in the marshy areas of the city of Yaounde (Cameroon): Importance of some abiotic factors of the medium. Applied Water Science, 9, 19. https://doi.org/10.1007/s13201-019-0895-y.

    Article  Google Scholar 

  • Giampaoli, S., & Spica, V. R. (2014). Health and safety in recreational waters. Bulletin of the World Health Organization, 92(2), 79. https://doi.org/10.2471/BLT.13.126391.

    Article  Google Scholar 

  • Gracenea, M., Castaño, S., Méndez, J., Lucena, F., & Gómez, M. S. (2018). Fecal contamination in public pools in Barcelona province: Cryptosporidium spp. and bacterial indicators. J. Water Health, 16(5), 762–772. https://doi.org/10.2166/wh.2018.267.

    Article  CAS  Google Scholar 

  • Guida, M., Di Onofrio, V., Gallè, F., Gesuele, R., Valeriani, F., Liguori, R., & Liguori, G. (2016). Pseudomonas aeruginosa in swimming pool water: Evidences and perspectives for a new control strategy. International Journal of Environmental Research and Public Health, 13(9), 919. https://doi.org/10.3390/ijerph13090919.

    Article  Google Scholar 

  • Hang, C., Zhang, B., Gong, T., & Xian, Q. (2016). Occurrence and health risk assessment of halogenated disinfection byproducts in indoor swimming pool water. Science of the Total Environment, 543, 425–431. https://doi.org/10.1016/j.scitotenv.2015.11.055.

    Article  CAS  Google Scholar 

  • Henry, A. C. (2016). The chemical reactions taking place in your swimming pool. Chemical and Engineering News, 94, 28–32.

    Google Scholar 

  • Hilles, A. H., Sarsour, A., Ramlawi, A., & Abed, Y. (2014). Assessment of sanitary conditions in the main swimming pools in Gaza Strip (2010–2013): Palestine. International Journal of Scientific Research in Environmental Sciences, 2, 261–268. https://doi.org/10.12983/ijsres-2014-p0261-0268.

    Article  Google Scholar 

  • Itah, A. Y., & Ekpobok, M. U. (2004). Pollution status of swimming pools in south-south zone of south-eastern Nigeria using microbiological and physicochemical indices. The South East Asian Journal of Tropical Medicine and Public Health, 35(2), 488–493.

    CAS  Google Scholar 

  • Jolly, J., & Akbar, S. (2017). Analysis of water quality of indoor swimming pools and its related health hazards. International Journal of Recent Scientific Research, 8(11), 21426–21431. https://doi.org/10.24327/ijrsr.2017.0811.1072.

    Article  Google Scholar 

  • Lindsay, K., Blackstock, J., Wang, W., Vemula, S., Jaeger, B. T., & Li, X. F. (2017). Sweetened swimming pools and hot tubs. Environmental Science & Technology Letters, 4(4), 149–153. https://doi.org/10.1021/acs.estlett.7b00043.

    Article  CAS  Google Scholar 

  • Lovibond. (2012). Traitement de l’eau de piscine et de spas, Tintomether GmbH (ed.) Allemagne (Dortmund). 55 p.

  • Manasfi, T., De Méo, M., Coulomb, B., Di Giorgio, C. & Boudenne, J. L. (2015). A comparison between freshwater and seawater swimming pools: from disinfection by-products profile to genotoxicity. Conference: 6th International Conference on Swimming Pool and SpaAt: Amsterdam.

  • Manasfi, T., Coulomb, B., & Boudenne, J. L. (2017). Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview. International Journal of Hygiene and Environmental Health, 220(3), 591–603. https://doi.org/10.1016/j.ijheh.2017.01.005.

    Article  CAS  Google Scholar 

  • Mugagga, F., & Nabaasa, B. B. (2016). The centrality of water resources to the realization of Sustainable Development Goals (SDG). A review of potentials and constraints on the African continent. International Soil and Water Conservation Research, 4(3), 215–223. https://doi.org/10.1016/j.iswcr.2016.05.004.

    Article  Google Scholar 

  • Nadja, E., Straube, F., Schopf, S., & Schlömann, M. (2017). Adhesion studies of microorganisms on natural ore material. Solid State Phenomena, 262, 398–402. https://doi.org/10.4028/www.scientific.net/SSP.262.398.

    Article  Google Scholar 

  • Noah Ewoti, O. V., Tamsa Arfao, A., Lontsi Djimeli, C., Moungang, L. M., Adjia, R., & Nola, M. (2017). Adhesion of Escherichia coli on fragments of some environments rocks in aquatic microcosm: Impact of PH and biodegradable organic compound. International Journal of Microbiology and Biotechnology, 2(3), 139–147. https://doi.org/10.11648/j.ijmb.20170203.16.

    Article  Google Scholar 

  • Oloruntoba, O. E., Mynepalli, K. C. S., & Tagbo, O. C. (2012). Assesment of microbiological quality and sanitary status of swimming pool in Ibadan, Nigéria. World Congress on Water, Climate and Energy, 6 p.

  • Omarova, A., Tussupova, K., Berndtsson, R., Marat, K., & Kulyash, S. (2018). Protozoan parasites in drinking water: A system approach for improved water, sanitation and hygiene in developing countries. International Journal of Environmental Research and Public Health, 15, 495. https://doi.org/10.3390/ijerph15030495.

    Article  CAS  Google Scholar 

  • Ribas, A., Jollivet, C., Morand, S., Thongmalayvong, B., Somphavong, S., Siew, C. C., & Chaisiri, K. (2017). Intestinal parasitic infections and environmental water contamination in a rural village of Northern Lao PDR. The Korean Journal of Parasitology, 55(5), 523–532. https://doi.org/10.3347/kjp.2017.55.5.523.

    Article  Google Scholar 

  • Schwartz, T., Armant, O., Bretschneider, N., Hahn, A., Kirchen, S., Seifert, M., & Dötsch, A. (2015). Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water. Microbial Biotechnology, 8, 116–130. https://doi.org/10.1111/1751-7915.12156.

    Article  CAS  Google Scholar 

  • Shi-Chang, T., Tong-YuWu, Jung-Chuan, C., Yi-Hung, L., Chih-Hsien, L., Siao-Jie, Y., & Ting-Wei, T. (2018). Investigation of sensitivities and drift effects of the arrayed flexible chloride sensor based on RuO2/GO at different temperatures. Sensors, 18(632), 1–12. https://doi.org/10.3390/s18020632.

    Article  CAS  Google Scholar 

  • Squire, S. A., & Ryan, U. (2017). Cryptosporidium and Giardia in Africa: Current and future challenges. Parasites & Vectors, 10(1), 195. https://doi.org/10.1186/s13071-017-2111-y.

    Article  Google Scholar 

  • Thivierge, K. (2014). Identification morphologique des parasites intestinaux. Cahier de stage, Institut national de santé: Québec 58 p.

  • Unuabonaha, E. I., Ugwujaa, C. G., Omorogiea, M. O., Adewuyia, A., & Oladojab, N. A. (2018). Clays for efficient disinfection of bacteria in water. Applied Clay Science, 151, 211–223. https://doi.org/10.1016/j.clay.2017.10.005.

    Article  CAS  Google Scholar 

  • WHO. (1994). Plates for the diagnosis of intestinal parasites. Geneva, 29 p.

  • WHO. (2006). Water, sanitation and health team. Guidelines for safe recreational water environments. Volume 2, Swimming pools and similar environments. Geneva: World Health Organization. 146 p. http://www.who.int/iris/handle/10665/43336.

  • Wyczarska-Kokot, J., & Piechurski, F. (2017). Application of nanosilver in swimming pool water treatment technology. Proceedings, 2(175), 1–8. https://doi.org/10.3390/ecws-2-04944.

    Article  Google Scholar 

  • Xiao, S., Yin, P., Zhang, Y., & Hu, S. (2017). Occurrence of Cryptosporidium and Giardia and the relationship between protozoa and water quality indicators in swimming pools. The Korean Journal of Parasitology, 55(2), 129–135. https://doi.org/10.3347/kjp.2017.55.2.129.

    Article  CAS  Google Scholar 

  • Yedeme, K., Legese, M. H., Gonfa, A., & Girma, S. (2017). Assessment of physicochemical and microbiological quality of public swimming pools in Addis Ababa, Ethiopia. The Open Microbiology Journal, 11, 98–104. https://doi.org/10.2174/1874285801711010098.

    Article  CAS  Google Scholar 

  • Yoder, J. S., Blackburn, B. G., Craun, G. F., Hill, V., Levy, D. A., Chen, N., Lee, S. H., Calderon, R. L., & Beach, M. J. (2004). Surveillance of waterborne-disease outbreaks associated with recreational water. Morbidity and Mortality Weekly Report. Surveillance Summaries, 53, 1–22.

    Google Scholar 

  • Zhang, T., Gan, Z., Gao, C., Ma, L., Li, Y., Li, X., & Sun, H. (2016). Occurrence of artificial sweeteners in human liver and paired blood and urine samples from adults in Tianjin, China and their implications for human exposure. Environmental Science: Processes & Impacts, 18, 1169–1176. https://doi.org/10.1039/c6em00130k.

    Article  CAS  Google Scholar 

  • Zsófia, B., & Mihály, K. (2012). The risk of contracting infectious diseases in public swimming pools. A review. Annali dell'Istituto Superiore di Sanità, 48(4), 374–386. https://doi.org/10.4415/Ann_12_04_05.

    Article  Google Scholar 

  • Zyara, A. M., Torvinen, E., Veijalainen, A. M., & Heinonen-Tanski, H. (2016). The effect of UV and combined chlorine/UV treatment on coliphages in drinking water disinfection. Water, 8(130), 1–9. https://doi.org/10.3390/w8040130.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the officials of the two swimming pools studied and the research team of the Laboratory of Hydrobiology and Environment of the University of Yaounde I (Cameroon).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Alain Nana.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manezeu Tonleu, E.O., Nana, PA., Onana, F.M. et al. Evaluation of the health risks linked to two swimming pools regularly frequented from the city of Yaounde in Cameroon (Central Africa). Environ Monit Assess 193, 36 (2021). https://doi.org/10.1007/s10661-020-08829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08829-7

Keywords

Navigation