Skip to main content

Advertisement

Log in

Sugarcane production and climate trends in Paraíba state (Brazil)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Statistical surveys to detect trends in time series are fundamental tools to evaluate farming dynamics of sugarcane and of adaptation plans for possible impacts caused by climate change. This work analyzed the influence of climate change in the cultivation of sugarcane in the state of Paraíba (Northeast Brazil), in order to investigate what are the consequences of temperature increase, air humidity level, and changes in the precipitation regime forecasted for the region in sugarcane farming. Data of temperature, total precipitation, and relative humidity of six meteorological stations kept by the Brazilian National Institute of Meteorology (INMET) spread across the state of Paraíba and data from the area of sugarcane harvesting from the Brazilian Institute of Geography and Statistics (IBGE). Mann-Kendall trend test was employed in order to analyze the existence of trends in each station, separately. The results pointed trends of significant increase in temperature for the stations of Campina Grande, João Pessoa, Monteiro, Patos, and Sousa. The stations of Areia, Campina Grande, and João Pessoa obtained significant precipitation trends. Regarding relative humidity, the stations of João Pessoa, Monteiro, and Patos presented significant decreasing trends, while Sousa showed significant increase trends. The results suggest that these trends may be increasing sugarcane production close to the coast of the region and decreasing production inland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AESA – Agência Executiva de Gestão das Águas do estado da Paraíba, 2016. Resumo Estendido, João Pessoa. http://www.aesa.pb.gov.br/perh/. Accessed 18 Feb 2020.

  • Alves, L. M., & Marengo, J. (2010). Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theoretical and Applied Climatology, 100(3-4), 337–350.

    Article  Google Scholar 

  • Arias, D., & Caballero, J. (2015). Paraiba State, Brazil: agricultural sector risk assessment. Washington: The World Bank.

    Google Scholar 

  • Biermann, F., Abbott, K., Andresen, S., Backstrand, K., Bernstein, S., Betsill, M. M., Bulkeley, H., Cashore, B., Clapp, J., Folke, C., Gupta, A., Gupta, J., Haas, P. M., Jordan, A., Kanie, N., Kluvankova-Oravska, T., Lebel, L., Liverman, D., Meadowcroft, J., Mitchell, R. B., Newell, P., Oberthur, S., Olsson, L., Pattberg, P., Sanchez-Rodriguez, R., Schroeder, H., Underdal, A., Vieira, S. C., Vogel, C., Young, O. R., Brock, A., & Zondervan, R. (2012). Navigating the anthropocene: improving earth system governance. Science, 335(6074), 1306–1307.

    Article  CAS  Google Scholar 

  • Blanco, M., Ramos, F., Doorslaer, B. V., et al. (2017). Climate change impacts on EU agriculture: a regionalized perspective taking into account market-driven adjustments. Agricultural Systems, 156, 52–66.

    Article  Google Scholar 

  • Carvalho, A. L., Menezes, R. S. C., Nóbrega, R. S., et al. (2015). Impact of climate changes on potential sugarcane yield in Pernambuco, northeastern region of Brazil. Renewable Energy, 78, 26–34.

    Article  Google Scholar 

  • Costanza, R., Graumlich, L., Steffen, W., Crumley, C., Dearing, J., Hibbard, K., Leemans, R., Redman, C., & Schimel, D. (2007). Sustainability or collapse: what can we learn from integrating the history of humans and the rest of nature? Ambio, 36(7), 522–527.

    Article  CAS  Google Scholar 

  • Dayana, M. L. (2015). The population dynamics of insects in sugarcane field at Aundipatti, Theni district, Tamil Nadu. Journal of the International Association of Advanced Technology and Science, 16(2), 1–24.

    Google Scholar 

  • Deschênes, O., & Greenstone, M. (2007). The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. The American Economic Review, 97(1), 354–385.

    Article  Google Scholar 

  • Doorembos, J., & Kassam, A. H. (1979). Yield response to water. Rome: FAO.

    Google Scholar 

  • Eggleston, G., Legendre, B., & Richard, C. (2001). Effect of harvest method and storage time on sugarcane deterioration I: cane quality changes. International Sugar Journal, 103(1232), 331–338.

    CAS  Google Scholar 

  • Gilbert, R. A., Shine Junior, J. M., Miller, J. D., et al. (2006). The effect of genotype, environment and time of harvest on sugarcane yields in Florida, USA. Field Crops Research, 95, 156–170.

    Article  Google Scholar 

  • Goossens, C., & Berger, A. (1986). Annual and seasonal climatic variations over the northern hemisphere and Europe during the last century. Annales geophysicae. Series B. Terrestrial and Planetary Physics, 4(4), 385–399.

    Google Scholar 

  • Guarenghi, M. M., & Walter, A. (2016). Assessing potential impacts of sugarcane production on water resources: a case study in Brazil. Wiley online library, 10(6), 699–709.

    CAS  Google Scholar 

  • Gunarathna, M. H. J. P., Sakai, K., Nakandakari, T., et al. (2018). Optimized subsurface irrigation system: the future of sugarcane irrigation. Water, 10(3), 1–14.

    Article  Google Scholar 

  • Henry, R. J. (2010). Basic information on the sugarcane plant. In R. Henry & C. Kole (Eds.), Genetics, genomics and breeding of sugarcane. New York: CRC Press.

    Chapter  Google Scholar 

  • IBGE – Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística) (2017) Municipal Agricultural Production 2017. IBGEb, Rio de Janeiro https://sidra.ibge.gov.br. Accessed 18 Feb 2020.

  • IBGE – Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia e Estatística) (2018) Agricultural Census. IBGE, Rio de Janeiro www.ibge.gov.br. Accessed 18 Feb 2020.

  • Inman-Bamber, N. G. (2004). Sugarcane water stress criteria for irrigation and drying off. Field Crops Research, 89, 107–122.

    Article  Google Scholar 

  • Inman-Bamber, N. G., & Smith, D. M. (2005). Water relations in sugarcane and response to water deficits. Field Crops Research, 92(2–3), 185–202.

    Article  Google Scholar 

  • Inman-Bamber, N. G., Bonnett, G. D., Spillman, M. F., Hewitt, M. L., & Jackson, J. (2008). Increasing sucrose accumulation in sugarcane by manipulating leaf extension and photosynthesis with irrigation. Australian Journal of Agricultural Research, 59, 13–26.

    Article  CAS  Google Scholar 

  • INMET – National Institute of Meteorology (Instituto Nacional de Meteorologia). (2018). Database. www.inmet.gov.br/ portal/index.php?r= bdmep/bdmep. Accessed 18 Feb 2020.

  • IPCC – Intergovernmental Panel on Climate Change (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Team CW, Pachauri, R. K., Reisinger, A. (eds.) Switzerland, Geneva. 2014.

  • James, G. (1999). The chemical ripening of sugarcane. International Sugar Journal, 101(1211), 560–562.

    CAS  Google Scholar 

  • Juhola, S., Klein, N., Kayhko, J., et al. (2017). Climate change transformations in Nordic agriculture? Journal of Rural Studies, 51, 28–36.

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin.

    Google Scholar 

  • Manhães, C. M. C., Garcia, R. F., Francelino, F. M. A., Francelino, H. . O., & Coelho, F. C. (2015). Factors that affect sprouting and tillering of sugar cane. Vértices, 17, 163–181.

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometric. The econometric society, 13, 245–259.

    Article  Google Scholar 

  • Marin, F. R., Jones, J. W., Royce, F., et al. (2011). Parameterization and evaluation of predictions of DSSAT/CANEGRO for Brazilian sugarcane. Agronomy Journal, 103, 100–110.

    Article  Google Scholar 

  • Marin, F. R., Jones, J. W., Royce, F., et al. (2012). Climate change impacts on sugarcane attainable yield in Southern Brazil. Climatic Change, 1, 101–110.

    Google Scholar 

  • Mo, X. G., Hu, S., Lin, Z. H., Liu, S. X., & Xia, J. (2017). Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Advances in Climate Change Research, 8(2), 93–98.

    Article  Google Scholar 

  • Nelson, G. C., Valin, H., Sands, R. D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., von Lampe, M., Lotze-Campen, H., Mason d’Croz, D., van Meijl, H., van der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, A., & Willenbockel, D. (2014). Climate change effects on agriculture: economic responses to biophysical shocks. PNAS, 111(9), 3274–3279.

    Article  CAS  Google Scholar 

  • Oyama, M. D., & Nobre, C. A. (2003). A new climate-vegetation equilibrium state for Tropical South America. Geophysical Research Letters, 30(23), 2199.

    Article  Google Scholar 

  • Rudorff, B. F. T., Aguiar, D. A., Silva, W. F., Sugawara, L. M., Adami, M., & Moreira, M. A. (2010). Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sensing, 2, 1057–1076.

    Article  Google Scholar 

  • Salmi, T. A. M., Anttila, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Den’s slope estimates-the Excel template application MAKESENS. Air. Qualitative Research, 7–35.

  • Scarpare, F. V., Leal, M. R. L. V., Victoria, R. L. (2013) The challenges of sugarcane ethanol in Brazil: past, present and future. In: Dellemand, J. F., Hilbert, J. A., Monforti, F. Bioenergy and Water. Milam, Luxembourg, 89–101.

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389.

    Article  Google Scholar 

  • Srivastava, A. K., & Rai, M. K. (2012). Sugarcane production: impact of climate change and its mitigation. Biodiversitas, 13(4), 213–227.

    Article  Google Scholar 

  • Verheye, W. H. (2010). Soils, plant growth and crop production. Encyclopedia of life support systems. Oxford: Eolss Publishers.

    Google Scholar 

  • Walter, A., Galdos, M. V., Scarpare, F. V., Leal, M. R. L. V., Seabra, J. E. A., da Cunha, M. P., Picoli, M. C. A., & de Oliveira, C. O. F. (2014). Brazilian sugarcane ethanol: developments so far and challenges for the future. WIREs Energy and Environment, 3(1), 70–92.

    Article  Google Scholar 

  • Wilhite, D. A. (2000). Drought as a natural hazard: conceptions and definitions. In Drought: a global assessment (pp. 111–120). Nebraska: Routledge.

    Google Scholar 

  • WMO – World Meteorological Organization (2012) Guide to agricultural meteorological practices, 134.

  • Yue, P. S., Yang, T. C., & Wu, C. K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260, 161–175.

    Article  Google Scholar 

  • Zhao, D., & Li, Y. R. (2015). Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, 2015, 1–10.

    Article  Google Scholar 

Download references

Funding

The authors thank the support of the Brazilian National Council for Scientific and Technological Development (CNPq Projects 401687/2016-3 and 306783/2018-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallysson Klebson de Medeiros Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, W.K.M., Medeiros, S.E.L., da Silva, L.P. et al. Sugarcane production and climate trends in Paraíba state (Brazil). Environ Monit Assess 192, 392 (2020). https://doi.org/10.1007/s10661-020-08358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08358-3

Keywords

Navigation