Skip to main content

Advertisement

Log in

Differentiation of weathered chemically dispersed oil from weathered crude oil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Oil fingerprinting is a crucial technology to trace the sources and behaviors of spilled oil. The use of dispersants enhances the stay of dispersed oil in a water column and changes the important properties of spilled oil. In case of fingerprinting of dispersed oil driven by dispersants, the fate and behaviors of biomarkers may be affected by the application of dispersants. Limited studies have investigated the statistical difference between fingerprinting of dispersed oil and non-dispersed oil using biomarkers, and the possible influence of the differences, if present. This study applied several principal component analyses (PCA) to differentiate weathered chemically dispersed oil from weathered crude (non-dispersed) oil using 103 diagnostic ratios of the same type of biomarkers and those of two types of biomarkers as input data. It showed that weathered chemically dispersed oil (CDO) can be differentiated from weathered crude oil (WCO) using specific diagnostic ratios that are affected by weathering. PCA analyses indicated the effects of the application of dispersants and weathering duration on weathering of biomarkers in CDO and WCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberto, W. D., del Pilar, D. A. M. A., Valeria, A. M. A., Fabiana, P. S., Cecilia, H. A., & de los Ángeles, B. M. A. (2001). Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquı́a River Basin (Córdoba–Argentina). Water Research, 35(12), 2881–2894.

    Article  CAS  Google Scholar 

  • Aranberri, I., Beverley, K. J., Binks, B. P., Clint, J. H., & Fletcher, P. D. (2002). How do emulsions evaporate? Langmuir, 18(9), 3471–3475.

    Article  CAS  Google Scholar 

  • Azevedo, D., Tamanqueira, J., Dias, J., Carmo, A., Landau, L., & Gonçalves, F. (2008). Multivariate statistical analysis of diamondoid and biomarker data from Brazilian basin oil samples. Fuel, 87(10–11), 2122–2130.

    Article  CAS  Google Scholar 

  • Bacosa, H. P., Erdner, D. L., & Liu, Z. (2015). Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site. Marine Pollution Bulletin, 95(1), 265–272.

    Article  CAS  Google Scholar 

  • Bao, M., Sun, P., Yang, X., Wang, X., Wang, L., Cao, L., & Li, F. (2014). Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment. Environmental Science: Processes & Impacts, 16(8), 1948–1956.

    CAS  Google Scholar 

  • Bayona, J. M., Domínguez, C., & Albaigés, J. (2015). Analytical developments for oil spill fingerprinting. Trends in Environmental Analytical Chemistry, 5, 26–34.

    Article  CAS  Google Scholar 

  • Brakstad, O. G., Nordtug, T., & Throne-Holst, M. (2015). Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes. Marine Pollution Bulletin, 93(1–2), 144–152.

    Article  CAS  Google Scholar 

  • Christensen, J. H., Hansen, A. B., Tomasi, G., Mortensen, J., & Andersen, O. (2004). Integrated methodology for forensic oil spill identification. Environmental Science & Technology, 38(10), 2912–2918.

    Article  CAS  Google Scholar 

  • Christensen, J. H., Tomasi, G., & Hansen, A. B. (2005). Chemical fingerprinting of petroleum biomarkers using time warping and PCA. Environmental Science & Technology, 39(1), 255–260.

    Article  CAS  Google Scholar 

  • Daling, P. S., Leirvik, F., Almås, I. K., Brandvik, P. J., Hansen, B. H., Lewis, A., & Reed, M. (2014). Surface weathering and dispersibility of MC252 crude oil. Marine Pollution Bulletin, 87(1), 300–310.

    Article  CAS  Google Scholar 

  • Fayad, N. M., & Overton, E. (1995). A unique biodegradation pattern of the oil spilled during the 1991 Gulf War. Marine Pollution Bulletin, 30(4), 239–246.

    Article  CAS  Google Scholar 

  • Ismail, A., Toriman, M. E., Juahir, H., Kassim, A. M., Zain, S. M., Ahmad, W. K. W., Wong, K. F., Retnam, A., Zali, M. A., Mokhtar, M., & Yusri, M. A. (2016). Chemometric techniques in oil classification from oil spill fingerprinting. Marine Pollution Bulletin, 111(1–2), 339–346.

    Article  CAS  Google Scholar 

  • Jeffers, J. (1967). Two case studies in the application of principal component analysis. Applied Statistics, 16, 225–236.

    Article  Google Scholar 

  • Kaufman, R., Dashti, H., Kabir, C., Pederson, J., Moon, M., Quttainah, R., & Al-Wael, H. (1997). Characterizing the greater Burgan Field: use of geochemistry and oil fingerprinting. In Middle East Oil Show and Conference, Bahrain: Society of Petroleum Engineers, 5, 385–394.

  • Kendall, M. G. (1948). Rank correlation methods. Oxford, England: Griffin.

  • Lessard, R. R., & DeMarco, G. (2000). The significance of oil spill dispersants. Spill Science & Technology Bulletin, 6(1), 59–68.

    Article  CAS  Google Scholar 

  • Ma, H., Liu, L., & Chen, T. (2010). Water security assessment in Haihe River Basin using principal component analysis based on Kendall τ. Environmental Monitoring and Assessment, 163(1), 539–544.

    Article  Google Scholar 

  • Macnaughton, S. J., Swannell, R., Daniel, F., & Bristow, L. (2003). Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Science & Technology Bulletin, 8(2), 179–186.

    Article  CAS  Google Scholar 

  • Olson, G. M., Gao, H., Meyer, B. M., Miles, M. S., & Overton, E. B. (2017). Effect of Corexit 9500A on Mississippi Canyon crude oil weathering patterns using artificial and natural seawater. Heliyon, 3(3), e00269.

    Article  Google Scholar 

  • Prata, P. S., Alexandrino, G. L., Mogollón, N. G. S., & Augusto, F. (2016). Discriminating Brazilian crude oils using comprehensive two-dimensional gas chromatography–mass spectrometry and multiway principal component analysis. Journal of Chromatography A, 1472, 99–106.

    Article  CAS  Google Scholar 

  • Prince, R. C. (2015). Oil spill dispersants: boon or bane? Environmental Science & Technology, 49(11), 6376–6384.

    Article  CAS  Google Scholar 

  • Prince, R. C., McFarlin, K. M., Butler, J. D., Febbo, E. J., Wang, F. C., & Nedwed, T. J. (2013). The primary biodegradation of dispersed crude oil in the sea. Chemosphere, 90(2), 521–526.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38(18), 3980–3992.

    Article  CAS  Google Scholar 

  • Song, X., Zhang, B., Chen, B., & Cai, Q. (2016). Use of sesquiterpanes, steranes, and terpanes for forensic fingerprinting of chemically dispersed oil. Water, Air, & Soil Pollution, 227(8), 281.

    Article  Google Scholar 

  • Song, X., Zhang, B., Chen, B., Lye, L., & Li, X. (2018). Aliphatic and aromatic biomarkers for fingerprinting of weathered chemically dispersed oil. Environmental Science and Pollution Research, 25(16), 15702–15714.

  • Stout, S. A., Uhler, A. D., & McCarthy, K. J. (2001). A strategy and methodology for defensibly correlating spilled oil to source candidates. Environmental Forensics, 2(1), 87–98.

    Article  CAS  Google Scholar 

  • Sun, P., Bao, K., Li, H., Li, F., Wang, X., Cao, L., Li, G., Zhou, Q., Tang, H., & Bao, M. (2018). An efficient classification method for fuel and crude oil types based on m/z 256 mass chromatography by COW-PCA-LDA. Fuel, 222, 416–423.

    Article  CAS  Google Scholar 

  • Sun, P., Bao, M., Li, F., Cao, L., Wang, X., Zhou, Q., Li, G., & Tang, H. (2015). Sensitivity and identification indexes for fuel oils and crude oils based on the hydrocarbon components and diagnostic ratios using principal component analysis (PCA) biplots. Energy & Fuels, 29(5), 3032–3040.

    Article  CAS  Google Scholar 

  • Swannell, R. P., & Daniel, F. (1999). Effect of dispersants on oil biodegradation under simulated marine conditions. In International Oil Spill Conference, Washington, DC: American Petroleum Institute,1999, 169-176.

  • Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 61(3), 611–622.

    Article  Google Scholar 

  • Tomasi, G., Van Den Berg, F., & Andersson, C. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18(5), 231–241.

    Article  CAS  Google Scholar 

  • Wang, C., Chen, B., Zhang, B., He, S., & Zhao, M. (2013). Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Marine Pollution Bulletin, 71(1), 64–68.

    Article  CAS  Google Scholar 

  • Wang, Z., Stout, S. A., & Fingas, M. (2006a). Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environmental Forensics, 7(2), 105–146.

    Article  CAS  Google Scholar 

  • Wang, Z., Yang, C., Hollebone, B., & Fingas, M. (2006b). Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products. Environmental Science & Technology, 40(18), 5636–5646.

    Article  CAS  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52.

    Article  CAS  Google Scholar 

  • Zhuang, M., Abulikemu, G., Campo, P., Platten, W. E., Suidan, M. T., Venosa, A. D., et al. (2016). Effect of dispersants on the biodegradation of South Louisiana crude oil at 5 and 25° C. Chemosphere, 144, 767–774.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chairs (CRC) Program, Canada Foundation for Innovation (CFI), Fisheries and Oceans Canada (DFO), and Environment and Climate Change Canada (ECCC) for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiyu Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Lye, L.M., Chen, B. et al. Differentiation of weathered chemically dispersed oil from weathered crude oil. Environ Monit Assess 191, 270 (2019). https://doi.org/10.1007/s10661-019-7392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7392-5

Keywords

Navigation