Skip to main content

Advertisement

Log in

Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An attempt has been made to study the effect of elevated temperature on soil hydrothermal regimes and winter wheat growth under simulated warming in temperature gradient tunnel (TGT). Results showed that bulk density (BDs) of 0, 0.9, and 2.5 °C were significantly different whereas BDs of 2.8 and 3.5 °C were not significantly different. Water filled pore space (WFPS) was maximum at 3.5 °C temperature rise and varied between 43.80 and 98.55%. Soil surface temperature (ST) at different dates of sowing increased with rise in sensor temperature and highest ST was observed at S5 sensors (3.5 °C temperature rise). Temperature and its difference were high for the top soil, and were stable for the deep soil. Photosynthesis rate (μmol CO2 m−2 s−1) of wheat was lower at higher temperature in different growth stages of wheat. In wheat, stomatal conductance declined from 0.67 to 0.44 mol m−2 s−1 with temperature rise. Stomatal conductance decreased with increase in soil temperature and gravimetric soil moisture content (SWC). In TGT, 0 °C temperature rise showed highest root weight density (RWD) (5.95 mg cm−3); whereas, 2.8 and 3.5 °C showed lowest RWD (4.90 mg cm−3). Harvest index was maximum (0.37) with 0 °C temperature rise, and it decreased with increase in temperature, which indicated that both grain and shoot biomass decreased with increase in temperature. Intensive studies are needed to quantify the soil hydrothermal regimes inside TGT along with the crop growth parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal, P. K. (2007). Climate change: implication for Indian agriculture. Jalvigyan Sameeksha, 22, 37–46.

    Google Scholar 

  • Aggarwal, P., & Sharma, N. K. (2002). Water uptake and yield of rainfed wheat in relation to tillage and mulch. Indian Journal of Soil Conservation, 30, 155–160.

    Google Scholar 

  • Aggarwal, P., Mittal, R. B., Maity, P., & Sharma, A. R. (2009). Modification of hydrothermal regimes under bed planted wheat. Geoderma, 153(3-4), 312–317.

    Article  Google Scholar 

  • Bai, Y., Wu, J., Pan, Q., Huang, J., Wang, Q., Li, F., Buyantuyev, A., & Han, X. (2007). Positive linear relationships between productivity and diversity: evidence from Eurasian steppe. Journal of Applied Ecology, 44, 1023–1034. https://doi.org/10.1111/j.1365-2664.2007.01351.x.

    Article  Google Scholar 

  • Bai, W., Wang, G., & Liu, G. (2012). Effects of elevated air temperatures on soil thermal and hydrologic processes in the active layer in an alpine meadow ecosystem of the Qinghai-Tibet Plateau. Journal of Mountain Science, 9(2), 243–255.

    Article  Google Scholar 

  • Bradford, K. J. (1983). Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiology, 73, 475–479. https://doi.org/10.1104/pp.73.2.475.

    Article  CAS  Google Scholar 

  • Bunce, J. A. (2000). Response of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Global Change Biology, 6, 371–382.

    Article  Google Scholar 

  • Burgess, S. S. O., Adams, M. A., Turner, N. C., & Ong, C. K. (1998). The redistribution of soil water by tree root systems. Oecologia, 115, 306–311.

    Article  Google Scholar 

  • Chakrabarti, B., Singh, S. D., Kumar, V., Harit, R. C., & Misra, S. (2013). Growth and yield response of wheat and chickpea crops under high temperature. Indian Journal of Plant Physiology, 18(1), 7–14. https://doi.org/10.1007/s40502-013-0002-6.

    Article  Google Scholar 

  • Cinnirella, S., Magnani, F., Saracino, A., & Borghetti, M. (2002). Response of a mature Pinus laricio plantation to a three-year restriction of water supply: structural and function acclimation to drought. Tree Physiology, 22, 21–30.

    Article  Google Scholar 

  • Cochard, H., Bodet, C., Ameglio, T., & Cruiziat, P. (2000). Cryoscanning electron microscopy observations of vessel content during transpiration in walnut petioles: facts or artifacts? Plant Physiology, 124, 1191–1202.

    Article  CAS  Google Scholar 

  • Derpsch, R., Sidiras, N., & Heinzmann, F. X. (1985). Manejo do solo com coberturas verdes no inverno. Pesquisa Agropecuária Brasileira, 20, 761–773.

    Google Scholar 

  • Ferris, R., Ellis, R. H., Wheeler, T. R., & Hadley, P. (1998). Effect of high temperature stress at Anthesis on grain yield and biomass of field-grown crops of wheat. Annals of Botany, 82, 631–639.

    Article  Google Scholar 

  • Gao, S., Guo, J., Zhao, S., Zhang, Y., & Pan, Y. (1996). The impacts of higher-temperature on wheat growth and yield in China. Scientia Atmospherica Sinica, 20(5), 599–605.

    Google Scholar 

  • Högy, P., Poll, C., Marhan, S., Kandeler, E., & Fangmeier, A. (2013). Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chemistry, 136, 1470–1477.

    Article  Google Scholar 

  • Horton, J. L., & Hart, S. C. (1998). Hydraulic lift: a potentially important ecosystem process. Trends in Ecology & Evolution, 13, 232–235.

    Article  CAS  Google Scholar 

  • IPCC. (2001). In: J.T., Houghton, D., Yihui, et al. (Eds.), The Scientific Basis. Third Assessment Report of Working Group I. Cambridge University Press, Cambridge, UK, 2001.

  • IPCC. (2007). The synthesis report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Irmak, S. (2016). http://cropwatch.unl.edu/2016/impacts-extreme-heat-stress-and-increased-soil-temperature-plant-growth-and-development.

  • Irvine, J., Law, B. E., Anthoni, P. M., & Meinzer, F. C. (2002). Water limitations to carbon exchange in old-growth and young ponderosa pine stands. Tree Physiology, 22, 189–196.

    Article  CAS  Google Scholar 

  • Ju, Z., Hu, C., Zhang, Y., & Chen, S. (2010). Effects of temperature rising on soil hydrothermal properties, winter wheat growth and yield. European IFSA Symposium, Vienna (Austria).

  • Kaur, J., Gosal, S. K., & Kaur, P. (2014). Effect of climate change on plant associated microbial communities and enzyme activities. African Journal of Microbiology Research, 8(33), 3087–3093. https://doi.org/10.5897/AJMR2014.6750.

    Article  Google Scholar 

  • Khetrapal, S., Pal, M., & Lata, S. (2009). Effect of elevated temperature on growth and physiological characteristics in chickpea cultivars. Indian Journal of Plant Physiology, 14(4), 377–383.

    Google Scholar 

  • Kreuzwieser, J., Papadopoulou, E., & Rennenberg, H. (2004). Interaction of flooding with carbon metabolism of forest trees. Plant Biology, 6, 299–306. https://doi.org/10.1055/s-2004-817882.

    Article  CAS  Google Scholar 

  • Kuroyanagi, T., & Paulsen, G. M. (1988). Mediation of high temperature injury by roots and shoots during reproductive growth of wheat. Plant, Cell & Environment, 11, 517–523.

    Article  Google Scholar 

  • Kurpius, M. R., Panek, J. A., Nikolov, N. T., McKay, M., & Goldstein, A. H. (2003). Partitioning of water flux in a Sierra Nevada ponderosa pine plantation. Agricultural and Forest Meteorology, 117, 173–192.

    Article  Google Scholar 

  • Lal, R. (2005). Climate change, soil carbon dynamics, and global food security. In R. Lal, B. Stewart, N. Uphoff, et al. (Eds.), Climate change and global food security (pp. 113–143). Boca Raton (FL): CRC Press.

    Chapter  Google Scholar 

  • Li, X., Jiang, D., & Liu, F. (2016). Soil warming enhances the hidden shift of elemental stoichiometry by elevated CO2 in wheat. Scientific Reports, 6, 23313. https://doi.org/10.1038/srep23313.

    Article  CAS  Google Scholar 

  • Magadza, C. H. D. (2000). Climate change impacts and human settlements in Africa: prospects for adaptation. Environ Monitoring and Assessment, 61, 193–205.

    Article  Google Scholar 

  • Maity, A., & Chakrabarty, S. K. (2013). Effect of environmental factors on hybrid seed quality of Indian mustard (Brassica juncea). African Journal of Agricultural Research, 8(48), 6213–6219.

    Google Scholar 

  • Maity, A., & Pramanik, P. (2013). Climate change and seed quality: an alarming issue in crop husbandry. Current Science, 105(10), 1336–1338.

    Google Scholar 

  • Merchant, A., Peuke, A. D., Keitel, C., Macfarlane, C., Warren, C. R., & Adams, M. A. (2010). Phloem sap and leaf 13C, carbohydrates and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. Journal of Experimental Botany, 61, 1785–1793. https://doi.org/10.1093/jxb/erq045.

    Article  CAS  Google Scholar 

  • Patil, R. H., Laegdsmand, M., Olesen, J. E., & Porter, J. R. (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. The Journal of Agricultural Science, 148, 553–566.

    Article  Google Scholar 

  • Paulsen, G. M. (1994). High temperature responses of crop plants. In K. J. Boote et al. (Eds.), Physiology and determination of crop yield. Madison, ASA, CSSA, SSSA.

  • Phillips, N., & Oren, R. (2001). Intra- and inter-annual variation in transpiration of a pine forest. Ecological Applications, 11, 385–396.

    Article  Google Scholar 

  • Pociecha, E., Koscielniak, J., & Filek, W. (2008). Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiologiae Plantarum, 2008(30), 529–535. https://doi.org/10.1007/s11738-008-0151-9.

    Article  Google Scholar 

  • Roberts, J. (2000). The influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrological Processes, 14(16-17), 2885–2901.

    Article  Google Scholar 

  • Sage, R. F., & Kubien, D. S. (2007). The temperature response of C(3) and C(4) photosynthesis. Plant, Cell & Environment, 30, 1086–1106.

    Article  CAS  Google Scholar 

  • Schapendonk, A. H. C. M., Xu, H. Y., Van Der Putten, P. E. L., & Spiertz, J. H. J. (2007). Heat-shock effects on photosynthesis and sink-source dynamics in wheat (Triticum aestivum L.) NJAS— Wageningen Journal of Life Sciences, 55, 37–54.

    Article  Google Scholar 

  • Shah, N. H., & Paulsen, G. M. (2003). Interaction of drought and high temperature on photosynthesis and grain filling of wheat. Plant and Soil, 257, 219–226.

    Article  CAS  Google Scholar 

  • Shah, F., Huang, J. L., Cui, K. H., Nie, L. X., Shah, T., Chen, C., & Wang, K. (2011). Impact of high-temperature stress on rice plant and its traits related to tolerance. The Journal of Agricultural Science, 149, 545–556.

    Article  CAS  Google Scholar 

  • Unsworth, M. H. (1986). Principles of microc1imate and plant growth in open-top chambers. Pages 16-29 in Microclimate and Plant Growth in Open-top Chambers. Commission of the European Communities, Belgium.

  • Wassmann, R., Jagadish, S. V. K., Heuer, S., Ismail, A., Redona, E., Serraj, R., Singh, R. K., Howell, G., Pathak, H., & Sumfleth, K. (2009). Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 101, 59–122.

    Article  Google Scholar 

  • Way, D. A., Oren, R., & Kroner, Y. (2015). The space-time continuum: the effects of elevated CO2 and temperature on trees and the importance of scaling. Plant, Cell & Environment, 38, 991–1007.

    Article  CAS  Google Scholar 

  • White, J. W., Kimball, B. A., Wall, G. W., Ottman, M. J., & Hunt, L. A. (2011). Responses of time of anthesis and maturity to sowing dates and infrared warming in spring wheat. Field Crops Research, 124, 213–222.

    Article  Google Scholar 

  • Wullschleger, S. D., Hanson, P. J., & Tschaplinski, T. J. (1998). Whole-plant water flux in understory red maple exposed to altered precipitation regimes. Tree Physiology, 18, 71–79.

    Article  Google Scholar 

  • Xu, Q., & Huang, B. (2000a). Growth and physiological responses of creeping bentgrass to changes in shoot and root temperatures. Crop Science, 40, 1365–1368.

    Google Scholar 

  • Xu, Q., & Huang, B. (2000b). Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass. Crop Science, 40, 1368–1374.

    Article  Google Scholar 

  • Yahdjian, L., & Sala, O. (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87, 952–962. https://doi.org/10.1890/0012-9658(2006)87[952:VSCPPR].

  • Yan, K., Chen, P., Shao, H., Zhang, L., & Xu, G. (2011). Effects of short-term high temperature on photosynthesis and photosystem II performance in sorghum. Journal of Agronomy & Crop Science, 197, 400–408. https://doi.org/10.1111/j.1439-037X.2011.00469.x.

    Article  CAS  Google Scholar 

  • Zhang, Q., Manzoni, S., Katul, G., Porporato, A., & Yang, D. (2014). The hysteretic evapotranspiration—vapor pressure deficit relation. Journal of Geophysical Research – Biogeosciences, 119, 125–140.

    Article  Google Scholar 

  • Zhang, L., Zhu, L., Yu, M., & Zhong, M. (2016). Warming decreases photosynthates and yield of soybean [Glycine max (L.) Merrill] in the North China Plain. The Crop Journal, 4, 139–146.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Indian Council Agricultural Research-Indian Agricultural Research Institute for providing the fund and research facilities for conducting the experiment. Facilities for the research work was partially funded by National Innovation in Climate Resilient Agriculture, ICAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pramanik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, P., Chakrabarti, B., Bhatia, A. et al. Effect of elevated temperature on soil hydrothermal regimes and growth of wheat crop. Environ Monit Assess 190, 217 (2018). https://doi.org/10.1007/s10661-018-6576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6576-8

Keywords

Navigation