Skip to main content
Log in

Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The soil radon (Rn222) and thoron (Rn220) concentrations recorded at Badargadh and Desalpar observatories in the Kutch region of Gujarat, India, have been analyzed to study the sources of the radon emissions, earthquake precursors, and the influence of meteorological parameters on radon emission. Radon and meteorological parameters were recorded using Radon Monitor RMT 1688-2 at these two stations. We used the radon data during February 21, 2011 to June 8, 2011, for Badargadh and March 2, 2011 to May 19, 2011, for the Desalpar station with a sampling interval of 10 min. It is observed that the radon concentrations at Desalpar varies between 781 and 4320 Bq m−3with an average value of 2499 Bq m−3, whereas thoron varies between 191 and 2017 Bq m−3with an average value of 1433.69 Bq m−3. The radon concentration at Badargadh varies between 264 and 2221 Bq m−3with an average value of 1135.4 Bq m−3, whereas thoron varies between 97 and 556 Bq m−3. To understand how the meteorological parameters influence radon emanation, the radon and other meteorological parameters were correlated with linear regression analysis. Here, it was observed that radon and temperature are negatively correlated whereas radon and other two parameters, i.e., humidity and pressure are positively correlated. The cross correlogram also ascertains similar relationships between radon and other parameters. Further, the ratio between radon and thoron has been analyzed to determine the deep or shallow source of the radon emanation in the study area. These results revealed that the ratio radon/thoron enhanced during this period which indicates the deeper source contribution is prominent. Incidentally, all the local earthquakes occurred with a focal depth of 18–25 km at the lower crust in this region. We observed the rise in the concentrations of radon and the ratio radon/thoron at Badargadh station before the occurrence of the local earthquakes on 29th March 2011 (M 3.7) and 17th May 2011 (M 4.2). We clearly observed the radon level crossing the mean + 2*sigma level before the occurrence of these events. We conclude that these enhanced radon emissions are linked with alteration of the crustal stress/strain in this region as this observing station is near the epicenters of the earthquakes. We did not observe considerable variations in radon at the Desalpar station which is far from the earthquake location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahrens, L. H. (1954). The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochimica et Cosmochimica Acta, 5(2), 49–73. https://doi.org/10.1016/0016-7037(54)90040-X.

    Article  CAS  Google Scholar 

  • Anderson, O. L., & Grew, P. C. (1977). Stress corrosion theory of crack propagation with applications to geophysics. Reviews of Geophysics and Space Physics, 15(1), 77–104. https://doi.org/10.1029/RG015i001p00077.

    Article  Google Scholar 

  • Baykut, S., Akgul, T., Inan, S., & Seyis, C. (2010). Observation and removal of daily quasi-periodic components in soil radon data. Radiation Measurements, 45(7), 872–879. https://doi.org/10.1016/j.radmeas.2010.04.002.

    Article  CAS  Google Scholar 

  • BIS (2002). IS:1893-2002 (Part I): Indian standard criteria for earthquake resistant design of structures, Part 1- general provisions and buildings, Bureau of Indian Standards, New Delhi.

  • Biswas, S. K. (1987). Regional framework, structure and evolution of the western marginal basins of India. Tectonophys, 135, 302–327.

    Article  Google Scholar 

  • Chambers, S. D., Hong, S.-B., Williams, A. G., Crawford, J., Grif-fiths, A. D., & Park, S.-J. (2014). Characterizing terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmospheric Chemistry and Physics, 14(18), 9903–9916. https://doi.org/10.5194/acp-14-9903-2014.

    Article  CAS  Google Scholar 

  • Chambers, S. D., Williams, A. G., Crawford, J., & Griffiths, A. D. (2015). On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmospheric Chemistry and Physics, 15(3), 1175–1190. https://doi.org/10.5194/acp-15-1175-2015.

    Article  Google Scholar 

  • Chaudhuri, H., Das, N. K., Bhandari, R. K., Sen, P., & Sinha, B. (2010). Radon activity measurements around Bakreswar thermal springs. Radiation Measurements, 45(1), 143–146. https://doi.org/10.1016/j.radmeas.2009.11.039.

    Article  CAS  Google Scholar 

  • Chaudhuri, H., Barman, C., Iyengar, A. N. S., Ghose, D., Sen, P., & Sinha, B. (2013). Long range correlation in earthquake precursory signals. European Physical Journal Special Topics, 222(3-4), 827–838. https://doi.org/10.1140/epjst/e2013-01886-y.

    Article  Google Scholar 

  • Chiranjib, B., Ghose, D., Sinha, B., & Deb, A. (2016). Detection of earthquake induced radon precursors by Hilbert Huang Transform. Journal of Applied Geophysics, 133, 123–131.

    Article  Google Scholar 

  • Crawford, J., Chambers, S., Kang, C. H., Griffiths, A., & Kim, W. H. (2015). Analysis of a decade of Asian outflow of PM 10 and TSP to Gosan, Korea; also incorporating Radon-222. Atmospheric Pollution Research, 6(3), 529–539. https://doi.org/10.5094/APR.2015.059.

    Article  CAS  Google Scholar 

  • Damkjaer, A., & Korsbech, U. (1985). Measurement of the emanation of radon-222 transport from Danish soils. Science Total Environment, 45, 343–350. https://doi.org/10.1016/0048-9697(85)90236-0.

    Article  CAS  Google Scholar 

  • Das, N. K., Bhandari, R. K., Ghose, D., Sen, P., Sinha, B. (2005). Anomalous fluctuation of radon, gamma dose and helium emanating from thermal spring prior to earthquake. Current Science, 89, 1399–1404.

  • Deb, A., Gazi, M., & Chiranjib, B. (2016). Anomalous soil radon fluctuations—signal of earthquakes in Nepal and eastern India regions. Journal of Earth System Science, 125(8), 1657–1665. https://doi.org/10.1007/s12040-016-0757-z.

    Article  CAS  Google Scholar 

  • Fleischer, R. L. (1981). Dislocation model for radon response to distant earthquakes. Geophysical Research Letters, 84, 77–480.

    Google Scholar 

  • Fleischer, R. L. (1983). Theory of alpha recoil effects on radon release and isotopic disequilibrium. Geochimica et Cosmochimica Acta, 47(4), 779–784. https://doi.org/10.1016/0016-7037(83)90111-4.

    Article  CAS  Google Scholar 

  • Friedmann, H. (1991). Selected problems in Radon measurement for earthquake prediction proceedings of the second workshop on Radon monitoring in radioprotection, environmental and/or earth science. In: Furlan, G. and Tommasino, L. (Ed.) World Scientific 307–316.

  • Friedmann, H., Aric, K., Gutdeutsch, R., King, C. Y., Altay, C., & Sav, H. (1988). Radon measurements for earthquake prediction along the North Anatolian Fault Zone: a progress report. Tectonophysics, 152(3-4), 209–214. https://doi.org/10.1016/0040-1951(88)90047-9.

    Article  CAS  Google Scholar 

  • Fu, C.-C., Yang, T. F., Chen, C.-H., Lee, L.-C., Wu, Y.-M., Liu, T.-K., Walia, V., Kumar, A., & Lai, T.-H. (2017). Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications. Journal of Asian Earth Sciences, 149, 64–77. https://doi.org/10.1016/j.jseaes.2017.02.032.

    Article  Google Scholar 

  • Giammanco, S., Sims, K. W. W., & Neri, M. (2007). Measurements of 220Rn and 222Rn and CO2 emission in soil and fumaroles gases on Mt. Etna volcano (Italy): implications for gas transport and shallow ground fracture. Geochemistry, Geophysics, Geosystems, 8, Q10001.

    Article  Google Scholar 

  • Guerra, M., & Lombardi, S. (2001). Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy). Tectonophysics, 339(3-4), 511–522. https://doi.org/10.1016/S0040-1951(01)00072-5.

    Article  CAS  Google Scholar 

  • Gupta, H. K., Harinaryana, T., Kousalya, M., Mishra, D. C., Mohan, I., Rao, N. P., Raju, P. S., Rastogi, B. K., Reddy, P. R., & Sarkar, D. (2001). Bhuj earthquake of 26 January 2001. Journal of the Geological Society of India, 57, 275–278.

    Google Scholar 

  • Hirotaka, U. I., Moriuchi, H., Takemura, Y., Tsuchida, H., Fujii, I., & Nakamura, M. (1988). Anomalously high radon discharge from Atotsugawa Fault prior to the western Nagano Prefecture earthquake (M 6.8) of September 14, 1984. Tectonophysics, 152, 147–152.

    Article  Google Scholar 

  • Igarashi, G., & Wakita, H. (1990). Groundwater radon anomalies associated with earthquakes. Tectonophysics, 180, 2–4.

    Article  Google Scholar 

  • Imme G, Morelli D. (2012). Radon as earthquake precursor. In: Earthquake research and analysis-statistical studies, observation and planning (Dr. Amico S.D., Ed.), ISBN: 978–953–51-0134-5, In Tech, Available from: http://www.intechopen.com/books/earthquake-research-and-analysis-statistical-studies-observations-andplanning/radon-as-earthquake-precursor.

  • Jaishi, H. P., Singh, S., Tiwari, R. P., & Tiwari, R. C. (2014a). Analysis of soil radon data in earthquake precursory studies. Annals of Geophysics, 57(5), S0544. https://doi.org/10.4401/ag-6513.

    Google Scholar 

  • Jaishi, H. P., Singh, S., Tiwari, R. P., & Tiwari, R. C. (2014b). Correlation of radon anomalies with seismic events along Mat fault in Serchhip District, Mizoram, India. Applied Radiation and Isotopes, 86, 79–84. https://doi.org/10.1016/j.apradiso.2013.12.040.

    Article  CAS  Google Scholar 

  • King, C. Y. (1978). Radon emanation on San Andreas Fault. Nature, 271(5645), 516–519. https://doi.org/10.1038/271516a0.

    Article  CAS  Google Scholar 

  • Klusman, R. W., & Jaacks, J. A. (1987). Environmental influence upon mercury, radon and helium concentrations in soil gas at a site near Denver, Colorado. Journal of Geochemical Exploration, 27(3), 259–280. https://doi.org/10.1016/0375-6742(87)90023-9.

    Article  CAS  Google Scholar 

  • Kovach, E. M. (1945). Meteorological influences upon the radon-content of soil-gas. Eos Transactions American Geophysical Union, 26, 241–248.

    Article  Google Scholar 

  • Kumar, A., Singh, S., Mahajan, S., Bajwa, B. S., Kalia, R., & Dhar, S. (2009). Earthquake precursory studies in Kangra valley of north-west Himalayas, India, with special emphasis on radon emission. Applied Radiation and Isotopes, 67(10), 1904–1911. https://doi.org/10.1016/j.apradiso.2009.05.016.

    Article  CAS  Google Scholar 

  • Kumar, S., Chopra, S., Choudhury, P., Singh, A. P., Yadav, R. B. S., & Rastogi, B. K. (2012). Ambient noise levels in Gujarat State (India) seismic network, Geomatics. Natural Hazards and Risk, 3(4), 342–354. https://doi.org/10.1080/19475705.2011.611952.

    Article  Google Scholar 

  • Kumar, N., Chauhan, V., Dhamodharan, S., Rawat, G., Hazarika, D., & Gautam, P. K. R. (2017). Prominent precursory signatures observed in soil and water radon data at multi-parametric geophysical observatory, Ghuttu for Mw 7.8 Nepal earthquake. Current Science, 112(5), 907–909.

    CAS  Google Scholar 

  • I. Laskar, P. Phukon, A. K. Goswami, G. Chetry and U. C. Roy, (2011). A possible link between radon anomaly and earthquake, Geochemical Journal, Vol. 45, pp. 439 to 446.

  • Maldonado S.C., Monnin M., Segovia N. and Seidel J.L. (1996). A radon measurement network to study radon anomalies as precursors of strong earthquakes in the Guerrero seismic gap. 11 WCEE, CD-Rom, ISBN: 0080428223, Pergamon. Paper 1762, p.6.

  • Nazaroff, W.W., Nero, A.V. (1988). Soil as a source of in-door radon: generation, migration and entry: radon and its decay products in indoor air. Wiley-Inter-Science Publication, pp. 57–112.

  • Neri, M., Ferrera, E., Giammanco, S., Currenti, G., Cirrincione, R., Patanè, G., & Zanon, V. (2016). Soil radon measurements as a potential tracer of tectonic and volcanic activity. Scientific Reports, 6(1), 24581. https://doi.org/10.1038/srep24581.

    Article  CAS  Google Scholar 

  • Padilla, G. D., Hernandez, P. A., Padron, E., Barrancos, J., Perez, N. M., Melian, G., Nolasco, D., Dionis, S., Rodriguez, F., Calvo, D., & Hernandez, I. (2013). Soil gas radon emission and volcanic activity at El Hierro (Canary Island): the 2011–2012 submarine eruption. Geochemistry, Geophysics, Geosystems, 14(2), 432–447. https://doi.org/10.1029/2012GC004375.

    Article  CAS  Google Scholar 

  • Pispak, P., Dürrast, H., & Bhongsuwan, T. (2010). Soil-gas radon as a possible earthquake precursor: a case study from the Khlong Marui Fault Zone, Southern Thailand. Kasetsart Journal (Natural Science), 44, 1079–1093.

    Google Scholar 

  • Prasad, Y., Prasad, G., Gusain, G. S., Choubey, V. M., & Ramola, R. C. (2009). Seasonal variation on radon emission from soil and water. Indian Journal of Physics, 83(7), 1001–1010. https://doi.org/10.1007/s12648-009-0060-9.

    Article  CAS  Google Scholar 

  • Ramola, R. C., Sandhu, A. S., Singh, M., Singh, S., & Virk, H. S. (1989). Geochemical exploration of uranium using radon measurement techniques. Nuclear Geophysics, 3, 57.

    CAS  Google Scholar 

  • Ramola, R. C., Prasad, Y., Prasad, G., Kumar, S., & Choubey, V. M. (2008). Soil-gas radon as seismotectonic indicator in Garhwal Himalaya. Applied Radiation and Isotopes, 66(10), 1523–1530. https://doi.org/10.1016/j.apradiso.2008.04.006.

    Article  CAS  Google Scholar 

  • Rastogi, B. K., Chadha, R. K., & Raju, I. P. (1986). Seismicity near Bhatsa reservoir, Maharashtra, India. Physics of the Earth and Planetary Interiors, 44(2), 179–199. https://doi.org/10.1016/0031-9201(86)90044-0.

    Article  Google Scholar 

  • Rikitake, T. (1976). Earthquake prediction developments in solid earth. Geophysics, 9, 357.

    Google Scholar 

  • Sac, M. M., Harmansah, C., Camgoz, B., & Sozbilir, H. (2011). Radon monitoring as the earthquake precursor in fault line in Western Turkey. Ekoloji, 20(79), 93–98.

    CAS  Google Scholar 

  • Saheli C., Argha., Nurujjaman Md., & Chiranjib B, (2017). Identification of preseismic anomalies of soil radon-222 signal using Hilbert–Huang transform, Nat Hazards, 87(3), 1587–1606. https://doi.org/10.1007/s11069-017-2835-1

  • Scholz, C. H., Sykes, L. R., & Aggarwal, Y. P. (1973). Earthquake prediction: a physical basis. Science, 181(4102), 803–810. https://doi.org/10.1126/science.181.4102.803.

    Article  CAS  Google Scholar 

  • Schumann RR, Owen DE. (1988). Relationship between geology, equivalent uranium concentration, and radon in soil gas, Fairfax Country, Verginia: USGS open file report 88–18, p 28.

  • Singh, M., Ramola, R. C., Singh, S., & Virk, H. S. (1988). The influence of meteorological parameters on soil gas radon. Expl. Geophys, IX, 85–90.

    Google Scholar 

  • Singh, S., Jaishi, H. P., Tiwari, R. P., & Tiwari, R. C. (2016). A study of variation in soil gas concentration associated with earthquakes near Indo-Burma Subduction zone. Geoenvironmental Disasters, 3(1), 22. https://doi.org/10.1186/s40677-016-0055-8.

    Article  Google Scholar 

  • Sundal A V, Vidar Valen, Oddmund Soldal, Terje Strand. (2008). The influence of meteorological parameters on soil radon levels in permeable glacial sediments. 418–428 doi: https://doi.org/10.1016/j.scitotenv.2007.09.001.

  • Tanner, A. B. (1964). Radon migration in the ground: a review, symposium proceedings natural radiation environment, 161–190. Chicago: University of Chicago Press.

    Google Scholar 

  • Tarakci, M., Harmanşah, C., Saç, M. M., & Içhedef, M. (2014). Investigation of the relationships between seismic activities and radon level in western Turkey. Applied Radiation and Isotopes, 83, 12–17. https://doi.org/10.1016/j.apradiso.2013.10.008.

    Article  CAS  Google Scholar 

  • Ulomov, V. I., Zakharovc, A. I., & Ulomova, N. V. (1967). Tashkent earthquake of April 26, 1966, and its aftershocks. Akad Nauk SSSR, Geophysics, 177, 567–570.

    Google Scholar 

  • Ulomov, V.I. & Marashev, B. Z. (1968). A precursor of a strong tectonic earthquake. Dokl. Akad. Sci. USSR, Earth Sci. Sect., 176, (l-6): 9–11.

  • Virk, H. S., & Singh, B. (1994). Radon recording of Uttarkashi earthquakes. Geophysical Research Letters, 21(8), 737–740. https://doi.org/10.1029/94GL00310.

    Article  CAS  Google Scholar 

  • Virk, H. S., Walia, V., & Kumar, N. (2001). Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya, India. Journal of Geodynamics, 31(2), 201–210. https://doi.org/10.1016/S0264-3707(00)00022-3.

    Article  Google Scholar 

  • Walia, V., Bajwa, B. S., Virk, H. S., & Sharma, N. (2003). Relationships between seismic parameters and amplitudes of radon anomalies in N-W Himalaya, India. Radiation Measurements, 36(1-6), 393–396. https://doi.org/10.1016/S1350-4487(03)00158-6.

    Article  CAS  Google Scholar 

  • Walia, V., Su, T. C., Fu, C. C., & Yang, T. F. (2005). Spatial variations of radon and helium concentrations in soil gas across Shan-Chaio fault, Northern Taiwan. Radiation Measurements, 40(2-6), 513–516. https://doi.org/10.1016/j.radmeas.2005.04.011.

    Article  CAS  Google Scholar 

  • Walia, V., Virk, H. S., & Bajwa, B. S. (2006). Radon precursory signals for some earthquakes of magnitude > 5 occurred in N–W Himalaya. Pure and Applied Geophysics, 163(4), 711–721. https://doi.org/10.1007/s00024-006-0044-z.

    Article  Google Scholar 

  • Walia, V., Lin, S. J., Hong, W. L., Fu, C. C., Yang, T. F., Wen, K. L., & Chen, C. H. (2009). Continuous temporal soil-gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan. Radiation Measurements, 44(9-10), 934–939. https://doi.org/10.1016/j.radmeas.2009.10.010.

    Article  CAS  Google Scholar 

  • Weinlinch, F. H., Faber, E., Bouskova, A., Horalek, J., Teschner, M., & Poggenburg, J. (2006). Seismically induced variations in Marin-skLzn fault gas composition in the NW Bohemian swarm quake region, Czech Republic—a continuous gas monitoring. Tectonophysics, 421(1-2), 89–110. https://doi.org/10.1016/j.tecto.2006.04.012.

    Article  Google Scholar 

  • Yang, T. F., Walia, V., Chyi, L. L., Fu, C. C., Chen, C. H., Liu, T. K., Song, S. R., Lee, C. Y., & Lee, M. (2005). Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiation Measurements, 40(2), 496–502. https://doi.org/10.1016/j.radmeas.2005.05.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director General, ISR, for his encouragement, scientific support, and permitting us to publish this work. The authors would like to thank Dr. Gregory J. White, Associate Editor, and anonymous reviewers for constructive suggestions which markedly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudhanarao Katlamudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Katlamudi, M., Shaji, J.P. et al. Influence of meteorological parameters on the soil radon (Rn222) emanation in Kutch, Gujarat, India. Environ Monit Assess 190, 111 (2018). https://doi.org/10.1007/s10661-017-6434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6434-0

Keywords

Navigation