Skip to main content

Advertisement

Log in

Assessing the phytoavailability of arsenic and phosphorus to corn plant after the addition of an acrylic copolymer to polluted soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil pollution by arsenic increases the potential risk of arsenic entrance into the food chain. The usefulness of maleic anhydride- styrene- acrylic acid copolymer on the mobility and phytoavailability of arsenic was evaluated. Treatments were the concentrations of acrylic copolymer (0, 0.05, 0.10, and 0.20% w/w) and the concentrations of soil total arsenic (0, 6, 12, 24, 48, and 96 mg kg−1). Sodium arsenate was added in appropriate amounts to subsamples of an uncontaminated soil to give contaminated soils with different levels of arsenic. The contaminated soils were subjected to a greenhouse experiment using corn as the test crop. The results showed that contamination of soil by arsenic increased the concentrations of soil available arsenic, root and aerial parts arsenic. By the use of acrylic copolymer, the concentration of available arsenic in the soil and the accumulation of arsenic in the root and aerial parts of the corn plant decreased but the dry weights of the root and aerial parts increased significantly. When the concentration of soil total arsenic was 96 mg kg−1, the application of copolymer at the concentration of 0.20% w/w reduced the concentrations of arsenic in soil, root, and aerial parts by 62.53, 43.65, and 37.00% respectively, indicating that application of acrylic copolymer immobilized arsenic in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albu, A. M., Mocioi, M., Doina Mateescu, C., & Iosif, A. (2010). Maleic anhydride copolymers with ability to bind metal ions. 1. polydentate amine derivatives for Cr (III) ions’ removal. Journal of Applied Polymer Science, 121, 1867–1874.

    Article  Google Scholar 

  • Aldrich, M. V., Peralta-Videa, J. R., Parsons, J. G., & Gardea-Torresdey, J. L. (2007). Examination of arsenic (III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy. Science of the Total Environment, 379, 249–255.

    Article  CAS  Google Scholar 

  • Alvarez-Ayuso, E., Otones, V., Murciego, A., & Garcia-Sanchez, A. (2013). Evaluation of different amendments to stabilize antimony in mining polluted soils. Chemosphere, 90, 2233–2239.

    Article  CAS  Google Scholar 

  • Bagherifam, S., Lakzian, A., Fotovat, A., Khorasani, R., & Komarneni, S. (2014). In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. Journal of Hazardous Materials, 273, 247–252.

    Article  CAS  Google Scholar 

  • Bang, S., Johnson, M., Korfiatis, G., & Meng, X. (2005). Chemical reactions between arsenic and zero-valent iron in water. Water Resources, 39, 763–770.

    CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2003). Arsenic—a review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica, 31, 9–18.

    Article  CAS  Google Scholar 

  • Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73, 251–261.

    Article  CAS  Google Scholar 

  • Bremner, J. M., & Mulvaney, C. S. (1996). Nitrogen—total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis (pp. 1085–1122). Madison: Soil Science Society of America, American Society of Agronomy.

    Google Scholar 

  • Caporale, A., Pigna, M., Azam, S., Sommella, A., Rao, M., & Violante, A. (2013). Effect of competing ligands on the sorption/desorption of arsenite on/from Mg–Fe layered double hydroxides (Mg–Fe-LDH). Chemical Engineering Journal, 225, 704–709.

    Article  CAS  Google Scholar 

  • Kim, J. Y., & Davis, A. P. (2003). Stabilization of available arsenic in highly contaminated mine tailings using iron. Environmental Science & Technology, 37, 189–195.

    Article  CAS  Google Scholar 

  • De Varennes, A., & Torres, M. O. (1999). Remediation of a long- term copper contaminated soil using a polyacrylate polymer. Soil Use and Management, 15, 230–232.

    Article  Google Scholar 

  • De Varennes, A., Queda, C., & Ramos, A. R. (2009). Polyacrylate polymers as immobilizing agents to aid phytostablization of two mine soils. Soil Use and Management, 25, 133–140.

    Article  Google Scholar 

  • Gao, Y., & Mucci, A. (2001). Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochimica Cosmochimica Acta, 65, 2361–2378.

    Article  CAS  Google Scholar 

  • Garg, N., & Singla, P. (2011). Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environmental Chemistry Letters, 9, 303–321.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Physical and mineralogical methods. In A. Klute (Ed.), Methods of soil analysis (pp. 383–411). Madison: Soil Science Society of America, American Society of Agronomy.

    Google Scholar 

  • Guiwei, Q., & De Varennes, A. (2009). Use of hydrophilic insoluble polymers in the restoration of metal-contaminated soils. Applied and Enviromental Soil Science, 2009, 1–8.

    Google Scholar 

  • Guiwei, Q., De Varennes, A., & Cunha-Queda, C. (2008). Remediation of a mine soil with insoluble polyacrylate polymers enhances soil quality and plant growth. Soil Use and Management, 24, 350–365.

    Article  Google Scholar 

  • Guo, H., Stuben, D., & Berner, Z. (2007). Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 22, 1039–1051.

    Article  CAS  Google Scholar 

  • Hartley, W., & Lepp, N. W. (2008). Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Science of the Total Environment, 390, 35–44.

    Article  CAS  Google Scholar 

  • Helalia, A. M., & Letey, J. (1989). Effects of different polymers on seedling emergence, aggregate stability and crust hardness. Soil Science, 148, 199–203.

    Article  CAS  Google Scholar 

  • Helmke, P. A., & Spark, D. L. (1996). Lithium, sodium, potassium, rubidium, and Cesium. In D. L. Sparks (Ed.), Methods of soil analysis (pp. 551–574). Madison: Soil Science Society of America, American Society of Agronomy.

    Google Scholar 

  • Hosseinpur Feyzi, M., Mosaferi, M., Dastgiri, S., Zolali, S., Poladi, N., & Azarfam, P. (2007). The prevalence of health problems in the Qopuz village of East Azerbaijan and its relation with arsenic levels in drinking water. Iranian Journal of Epidemiology, 3, 21–27 Persian.

    Google Scholar 

  • Hudson Edwards, K. A., Houghton, S. L., & Osborn, A. (2004). Extraction and analysis of arsenic in soils and sediments. Trends in Analytical Chemistry, 23, 745–752.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Montesinos, I. C., Lagerkvist, A., & Maurice, C. (2007). Evaluation of the critical factors controlling stability of chromium, copper, arsenic and zinc in iron-treated soil. Chemosphere, 67, 410–417.

    Article  CAS  Google Scholar 

  • Larson, R. J., Bookland, E. A., Williams, R. T., Yocom, K. M., Saucy, D. A., Freeman, M. B., & Swift, G. (1997). Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge. Journal of Environmental Polymer Degradation, 5, 41–48.

    CAS  Google Scholar 

  • Lee, S. H., Kim, E. Y., Jihoon, Y. H., & Kim, J. G. (2011). In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma, 161, 1–7.

    Article  Google Scholar 

  • Lei, M., Tie, B. Q., Zeng, M., Qing, P. F., Song, Z. G., Williams, P. N., & Huang, Y. Z. (2013). An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice. Environmental Geochemistry and Health, 35, 379–390.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Liu, Q. J., Zheng, C. M., Hu, C. X., Tan, Q. L., Sun, X. C., & Su, J. J. (2012). Effects of high concentrations of soil arsenic on the growth of winter wheat (Triticum aestivum L) and rape (Brassica napus). Plant, Soil and Environment, 58, 22–27.

    CAS  Google Scholar 

  • Mansouri, T., Golchin, A., & Neyestani, M. R. (2017). The effects of hematite nanoparticles on phytoavailability of arsenic and corn growth in contaminated soils. International journal of Environmental Science and Technology. doi:10.1007/s13762-017-1267-5.

  • Meharg, A. A., & Macnair, M. R. (1992). Suppression of the high affinity phosphate uptake system a mechanism of arsenate tolerance in Holcus lanatus L. Journal of Experimental Botany, 43, 519–524.

    Article  CAS  Google Scholar 

  • Meharg, A. A., Naylor, J., & Macnair, M. R. (1994). Phosphorus nutrition of arsenate-tolerant and non-tolerant phenotypes of velvetgrass. Journal of Environment Quality, 23, 234–238.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Cirelli, A. F. (2010). Remediation of arsenic contaminated soils by iron amendments: a review. Critical Reviews in Environmental Science and Technology, 40, 93–115.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193–207.

    Article  Google Scholar 

  • Nelson, R. E. (1982). Chemical and microbiological properties. In A. L. Page (Ed.), Methods of soil analysis (pp. 181–196). Madison: Soil Science Society of America, American Society of Agronomy.

    Google Scholar 

  • Neupane, G., & Donahoe, R. J. (2013). Calcium–phosphate treatment of contaminated soil for arsenic immobilization. Applied Geochemistry, 28, 145–154.

    Article  CAS  Google Scholar 

  • Ong, G. H., Yap, C. K., Maziah, M., Suhaimi, H., & Tan, S. G. (2013). An investigation of arsenic contamination in Peninsular Malaysia based on Centella asiatica and soil samples. Environmental Monitoring and Assessment, 185, 3243–3254.

    Article  CAS  Google Scholar 

  • Paikaray, S., Hendry, J., & Dughan, J. (2013). Controls on arsenate, molybdate, and selenite uptake by hydrotalcite-like layered double hydroxides. Chemical Geology, 345, 130–138.

    Article  CAS  Google Scholar 

  • Raghothama, K. G., & Karthikeyan, A. S. (2005). Phosphate acquisition. Plant and Soil, 274, 37–49.

    Article  CAS  Google Scholar 

  • Seyed Dorraji, S., Golchin, A., & Ahmadi, S. (2010). The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils. Clean Soil Air Water, 38, 584–591.

    Google Scholar 

  • Shaibur, M. R., Adjadeh, T. A., & Kawai, S. (2013). Effect of phosphorus on the concentrations of arsenic, iron and some other elements in barley grown hydroponically. Soil Science and Plant Nutrition, 13, 87–98.

    Google Scholar 

  • Sojka, R. E., Bjorneberg, D. L., Entry, J. A., Lentz, R. D., & Orts, W. J. (2007). Polyacrylamide in agriculture and environmental land management. Advances in Agronomy, 92, 75–162.

    Article  CAS  Google Scholar 

  • Talukder, A. S. M. H. M., Meisner, C. A., Sarkar, M. A. R., Islam, M. S., Sayre, K. D., Duxbury, J. M., & Lauren, J. G. (2012). Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil–water system: II. Arsenic uptake. Ecotoxicology and Environmental Safety, 80, 145–151.

    Article  CAS  Google Scholar 

  • Tang, T., & Miller, D. M. (1991). Growth and tissue composition of rice grown in soil treated with inorganic copper, nickel, and arsenic. communication in Soil Science and Plant Analysis, 22, 2037-2045.

  • Tu, C., & Ma, L. Q. (2005). Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, 135, 333–340.

    Article  CAS  Google Scholar 

  • United States, Office of Experiment Stations. (1950). Methods for soil characterization. Agriculture handbook (pp. 83–126). Washington: Department of Agriculture.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science Society of America Journal, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wall, F. T., & Gill, S. J. (1954). Interaction of cupric ions with polyacrylic acid. The Journal of Physical Chemistry, 58, 1128–1130.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 36, 309–323.

    Article  Google Scholar 

  • Yoon, I. H., Moon, D. H., Kim, K. W., Lee, K. Y., Lee, J. H., & Kim, M. G. (2010). Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. Journal of Environmental Management, 91, 2322–2328.

    Article  CAS  Google Scholar 

  • Zandsalimi, S., Karimi, N., & Kohandel, A. (2011). Arsenic in soil, vegetation and water of a contaminated region. International journal of Environmental Science and Technology, 8, 331–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Mansouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, T., Golchin, A. & Kouhestani, H. Assessing the phytoavailability of arsenic and phosphorus to corn plant after the addition of an acrylic copolymer to polluted soils. Environ Monit Assess 189, 450 (2017). https://doi.org/10.1007/s10661-017-6163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6163-4

Keywords

Navigation