Skip to main content
Log in

Metal speciation in sediment and bioaccumulation in Meretrix lyrata in the Tien Estuary in Vietnam

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentrations of seven toxic metals (cadmium (Cd), nickel (Ni), chromium (Cr), arsenic (As), lead (Pb), copper (Cu), and zinc (Zn)) were determined in sediments and the soft tissues of a bivalve species (Meretrix lyrata) collected from the Tien Estuary in Tien Giang Province, South Vietnam. The total metal concentrations in sediments (mg/kg dry weight) increased as Cd (0.06) < Cu (5.0) < Pb (13.9) < As (16.3) < Ni (24) < Cr (50) < Zn (62). Speciation analysis revealed that these metals existed mainly in the residual fraction (43–94%), followed by the Fe-Mn oxide-bound (5–35%) and organic/sulfide-bound (0.6–9.2%) fractions. The metal concentrations in M. lyrata (mg/kg dry weight) were in the ranges of 1.3–1.9 (Cd), 1.5–2.8 (Ni), 1.8–3.4 (Cr), 11–16 (As), 0.3–0.6 (Pb), 6.9–8.7 (Cu), and 95–128 (Zn), which are safe for human consumption. The order of the mean biota-sediment accumulation factor (BSAF) of the metals in the non-residual fractions of the sediment for M. lyrata was Cd > Cu > As > Zn > Cr > Ni > Pb. The Risk Assessment Codes (RACs) suggest that the highest mobility of Cd (with RAC = 37%) poses greater environmental risk to aquatic biota. Correlation analysis results show that M. lyrata can be used as a biomonitor of Cd and Cu pollution in the exchangeable, acid-soluble, and non-residual sediment fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah, M. A. M., & Abdallah, A. M. A. (2008). Biomonitoring study of heavy metals in biota and sediments in the South Eastern coast of Mediterranean sea, Egypt. Environmental Monitoring and Assessment, 146(1), 139–145. doi:10.1007/s10661-007-0066-8.

    Article  CAS  Google Scholar 

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37(4), 813–822. doi:10.1016/S0043-1354(02)00392-5.

    Article  CAS  Google Scholar 

  • Anjan Kumar Prusty, B., Chandra, R., & Azeez, P. A. (2009). Chemical partitioning of Cu, Pb and Zn in the soil profile of a semi arid dry woodland. Chemical Speciation & Bioavailability, 21(3), 141–151. doi:10.3184/095422909X466103.

    Article  Google Scholar 

  • Australia New Zealand Food Standards Code – Schedule 19 (2016). Maximum levels of contaminants and natural toxicants. Australia, Federal Register of Legislation.

  • Baudrimont, M., Schäfer, J., Marie, V., Maury-Brachet, R., Bossy, C., Boudou, A., et al. (2005). Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Médoc salt marshes (Gironde estuary, France). Science of the Total Environment, 337(1–3), 265–280. doi:10.1016/j.scitotenv.2004.07.009.

    Article  CAS  Google Scholar 

  • Benitez, L. N., & Dubois, J.-P. (1999). Evaluation of the selectivity of sequential extraction procedures applied to the speciation of cadmium in soils. International Journal of Environmental Analytical Chemistry, 74(1–4), 289–303. doi:10.1080/03067319908031433.

    Article  CAS  Google Scholar 

  • Biati, A., & Karbassi, A. R. (2012). Flocculation of metals during mixing of Siyahrud River water with Caspian Sea water. Environmental Monitoring and Assessment, 184(11), 6903–6911. doi:10.1007/s10661-011-2466-z.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (1997). Microalgae for aquaculture: opportunities and constraints. Journal of Applied Phycology, 9(5), 393. doi:10.1023/a:1007921728300.

    Article  Google Scholar 

  • Burgess, R. M., & Morrison, G. E. (1994). A short-exposure, sublethal, sediment toxicity test using the marine bivalve Mulinia lateralis: statistical design and comparative sensitivity. Environmental Toxicology and Chemistry, 13(4), 571–580. doi:10.1002/etc.5620130405.

    Article  CAS  Google Scholar 

  • Byrne, P. A., & O’Halloran, J. (2001). The role of bivalve molluscs as tools in estuarine sediment toxicity testing: a review. Hydrobiologia, 465(1), 209–217. doi:10.1023/a:1014584607501.

    Article  CAS  Google Scholar 

  • Chung, K. W., Fulton, M. H., & Scott, G. I. (2007). Use of the juvenile clam, Mercenaria mercenaria, as a sensitive indicator of aqueous and sediment toxicity. Ecotoxicology and Environmental Safety, 67(3), 333–340. doi:10.1016/j.ecoenv.2006.10.009.

    Article  CAS  Google Scholar 

  • Codex Standard 193-1995 (2012). Codex general standard for contaminants and toxins in food and feed. Geneva-Switzerland, codex alimentarius-food and agriculture organization of the United Nations and World Health Organization.

  • Commission Regulation (EC) No 1881/2006 (2006). Maximum levels for certain contaminants in foodstuffs. Brussels, The Commission Of The European Communities.

  • Edward, F. B., Yap, C. K., Ismail, A., & Tan, S. G. (2008). Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves. Water, Air, and Soil Pollution, 196(1), 297–309. doi:10.1007/s11270-008-9777-x.

    Google Scholar 

  • Elemental Analysis Manual (EAM) for Food and Related Products (2015). Section 4.7- inductively coupled plasma-mass spectrometric determination of arsenic, cadmium, chromium, lead, mercury, and other elements in food using microwave assisted digestion. United States, U.S. Food and Drug Administration.

  • Eliseo Ochoa-Valenzuela, L., Gómez-Alvarez, A., García-Rico, L., & Israel Villalba-Atondo, A. (2009). Distribution of heavy metals in surface sediments of the Bacochibampo Bay, Sonora, Mexico. Chemical Speciation & Bioavailability, 21(4), 211–218. doi:10.3184/095422909X12548393083284.

    Article  Google Scholar 

  • EPA Method 3052 (1996). Microwave assisted acid digestion of siliceous and organically based matrices. United States, U.S. Environmental Protection Agency.

  • EPA Method 6020B (2014). Inductively coupled plasma-mass spectrometric. United States, U.S. Environmental Protection Agency.

  • Food Code - Article 2 (2009). Common standards & specifications for general foods. Republic of Korea, Ministry of Food and Drug Safety.

  • Fytianos, K., & Lourantou, A. (2004). Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environment International, 30(1), 11–17. doi:10.1016/S0160-4120(03)00143-0.

    Article  CAS  Google Scholar 

  • Giordano, R., Arata, P., Ciaralli, L., Rinaldi, S., Giani, M., Maria Cicero, A., et al. (1991). Heavy metals in mussels and fish from Italian coastal waters. Marine Pollution Bulletin, 22(1), 10–14. doi:10.1016/0025-326X(91)90438-X.

    Article  CAS  Google Scholar 

  • Gleyzes, C., Tellier, S., & Astruc, M. (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. TrAC Trends in Analytical Chemistry, 21(6–7), 451–467. doi:10.1016/S0165-9936(02)00603-9.

    Article  CAS  Google Scholar 

  • Gómez-Álvarez, A., Valenzuela-García, J. L., Aguayo-Salinas, S., Meza-Figueroa, D., Ramírez-Hernándezc, J., & Ochoa-Ortega, G. (2007). Chemical partitioning of sediment contamination by heavy metals in the San Pedro River, Sonora, Mexico. Chemical Speciation & Bioavailability, 19(1), 25–35. doi:10.3184/095422907X198013.

    Article  Google Scholar 

  • Griscom, S. B., & Fisher, N. S. (2004). Bioavailability of sediment-bound metals to marine bivalve molluscs: An overview. Estuaries, 27(5), 826–838. doi:10.1007/bf02912044.

    Article  CAS  Google Scholar 

  • Hamilton, R. S., Revitt, D. M., & Warren, R. S. (1984). Levels and physico-chemical associations of Cd, Cu, Pb and Zn in road sediments. Science of the Total Environment, 33(1), 59–74. doi:10.1016/0048-9697(84)90381-4.

    Article  CAS  Google Scholar 

  • ISO 5667-13:1997.Water quality -- Sampling (1997). Part 13: Guidance on sampling of sludges from sewage and water treatment works. Geneva-Switzerland, International Organization for Standardization.

  • ISO 5667-15:1999.Water quality -- Sampling (1999). Part 15: Guidance on preservation and handling of sludge and sediment samples. Geneva-Switzerland, International Organization for Standardization.

  • Jain, C. K. (2004). Metal fractionation study on bed sediments of river Yamuna, India. Water Research, 38(3), 569–578. doi:10.1016/j.watres.2003.10.042.

    Article  CAS  Google Scholar 

  • Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of river Narmada, India. Environmental Monitoring and Assessment, 141(1), 35–47. doi:10.1007/s10661-007-9876-y.

    Article  CAS  Google Scholar 

  • Karbassi, A. R., & Heidari, M. (2015). An investigation on role of salinity, pH and DO on heavy metals elimination throughout estuarial mixture. Global Journal of Environmental Science and Management, 1(1), 41–46. doi:10.7508/gjesm.2015.01.004.

    CAS  Google Scholar 

  • Karbassi, A. R., & Shankar, R. (2005). Geochemistry of two sediment cores from the west coast of India. [journal article]. International Journal of Environmental Science and Technology, 1(4), 307–316. doi:10.1007/bf03325847.

    Article  CAS  Google Scholar 

  • King, C. K., Dowse, M. C., Simpson, S. L., & Jolley, D. F. (2004). An assessment of five Australian Polychaetes and bivalves for use in whole-sediment toxicity tests: toxicity and accumulation of copper and zinc from water and sediment. Archives of Environmental Contamination and Toxicology, 47(3), 314–323. doi:10.1007/s00244-004-3122-1.

    Article  CAS  Google Scholar 

  • King, C. K., Dowse, M. C., & Simpson, S. L. (2010). Toxicity of metals to the bivalve Tellina deltoidalis and relationships between metal bioaccumulation and metal partitioning between seawater and marine sediments. Archives of Environmental Contamination and Toxicology, 58(3), 657–665. doi:10.1007/s00244-009-9413-9.

    Article  CAS  Google Scholar 

  • Lakshmana Senthil, S., Ajith Kumar, T. T., Marudhu Pandi, T., Dhaneesh, K. V., Bala Murugan, J., & Bala Subramanian, T. (2012). Metal contagion in ecologically important estuary located in Bay of Bengal. Water Quality Exposure and Health, 4(3), 137–142. doi:10.1007/s12403-012-0072-0.

    Article  CAS  Google Scholar 

  • Lau, S., Mohamed, M., Tan Chi Yen, A., & Su’ut, S. (1998). Accumulation of heavy metals in freshwater molluscs. Science of the Total Environment, 214(1–3), 113–121. doi:10.1016/S0048-9697(98)00058-8.

    Article  CAS  Google Scholar 

  • Li, J. (2014). Risk assessment of heavy metals in surface sediments from the Yanghe River, China. International Journal of Environmental Research and Public Health, 11(12), 12441–12453. doi:10.3390/ijerph111212441.

    Article  CAS  Google Scholar 

  • Liu, H., Li, L., Yin, C., & Shan, B. (2008). Fraction distribution and risk assessment of heavy metals in sediments of Moshui Lake. Journal of Environmental Sciences, 20(4), 390–397. doi:10.1016/S1001-0742(08)62069-0.

    Article  CAS  Google Scholar 

  • Liu, B., Hu, K., Jiang, Z., Yang, J., Luo, X., & Liu, A. (2011). Distribution and enrichment of heavy metals in a sediment core from the Pearl River Estuary. Environmental Earth Sciences, 62(2), 265–275. doi:10.1007/s12665-010-0520-8.

    Article  CAS  Google Scholar 

  • Luoma, S. N., & Rainbow, P. S. (2008). Metal contamination in aquatic environments: science and lateral management. Cambridge: Cambridge University Press.

    Google Scholar 

  • Malaysian Food Regulation. (1985). Maximum permitted proportion of metal contaminant in specified food. Malaysia, Ministry of Health.

  • Maiz, I., Arambarri, I., Garcia, R., & Millán, E. (2000). Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution, 110(1), 3–9. doi:10.1016/S0269-7491(99)00287-0.

    Article  CAS  Google Scholar 

  • McLean, J. E., & Bledsoe, B. E. (1992). Behavior of metals in soils: EPA Groundwater Issue, EPA/540/s-92/018.

  • Ministry of Public Health’s Regulation No.98, B.E. 2529 (1986). Contaminated food standard. Thailand, Ministry of Public Health.

  • Mohan, M., Augustine, T., Jayasooryan, K. K., Shylesh Chandran, M. S., & Ramasamy, E. V. (2012). Fractionation of selected metals in the sediments of Cochin estuary and Periyar River, southwest coast of India. The Environmentalist, 32(4), 383–393. doi:10.1007/s10669-012-9399-0.

    Article  Google Scholar 

  • Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55(3), 431–442. doi:10.1016/j.chemosphere.2003.10.047.

    Article  CAS  Google Scholar 

  • Neyestani, M. R., Bastami, K. D., Esmaeilzadeh, M., Shemirani, F., Khazaali, A., Molamohyeddin, N., et al. (2016). Geochemical speciation and ecological risk assessment of selected metals in the surface sediments of the northern Persian Gulf. Marine Pollution Bulletin, 109(1), 603–611. doi:10.1016/j.marpolbul.2016.05.024.

    Article  CAS  Google Scholar 

  • Pardo, R., Barrado, E., Lourdes, P., & Vega, M. (1990). Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Research, 24(3), 373–379. doi:10.1016/0043-1354(90)90016-Y.

    Article  CAS  Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Lopez Sanchez, J. F. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189(1), 291–333. doi:10.1007/s11270-007-9564-0.

    Article  CAS  Google Scholar 

  • Rath, P., Panda, U. C., Bhatta, D., & Sahu, K. C. (2009). Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahmani and Nandira rivers, India. Journal of Hazardous Materials, 163(2–3), 632–644. doi:10.1016/j.jhazmat.2008.07.048.

    Article  CAS  Google Scholar 

  • Rauret, G. F., Lopez-Sanchez, J., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1(1), 57–61. doi:10.1039/A807854H.

    Article  CAS  Google Scholar 

  • Saleem, M., Iqbal, J., & Shah, M. H. (2015). Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—a case study from Mangla Lake, Pakistan. Environmental Nanotechnology, Monitoring & Management, 4, 27–36. doi:10.1016/j.enmm.2015.02.002.

    Article  Google Scholar 

  • Salomons, W., & Förstner, U. (1980). Trace metal analysis on polluted sediments. Environmental Technology Letters, 1(11), 506–517. doi:10.1080/09593338009384007.

    Article  CAS  Google Scholar 

  • SI No 268- Quality of Shellfish Waters. (2006). Maximum levels for metals in shellfish flesh. Brussels: European Communities.

    Google Scholar 

  • Singh, K. P., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 312(1–4), 14–27. doi:10.1016/j.jhydrol.2005.01.021.

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. Journal of Hazardous Materials, 186(2–3), 1837–1846. doi:10.1016/j.jhazmat.2010.12.081.

    Article  CAS  Google Scholar 

  • Szefer, P., Ali, A. A., Ba-Haroon, A. A., Rajeh, A. A., Gedon, J., & Nabrzyski, M. (1999). Distribution and relationships of selected trace metals in molluscs and associated sediments from the Gulf of Aden, Yemen. Environmental Pollution, 106(3), 299–314. doi:10.1016/S0269-7491(99)00108-6.

    Article  CAS  Google Scholar 

  • Taverniers, I., De Loose, M., & Van Bockstaele, E. (2004). Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends in Analytical Chemistry, 23(8), 535–552. doi:10.1016/j.trac.2004.04.001.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Thompson, M., & Lowthian, P. J. (1995). A Horwitz-like function describes precision in a proficiency test. Analyst, 120(2), 271–272. doi:10.1039/AN9952000271.

    Article  CAS  Google Scholar 

  • Türkmen, A., Türkmen, M., Tepe, Y., & Akyurt, İ. (2005). Heavy metals in three commercially valuable fish species from İskenderun Bay, Northern East Mediterranean Sea, Turkey. Food Chemistry, 91(1), 167–172. doi:10.1016/j.foodchem.2004.08.008.

    Article  Google Scholar 

  • Tu, N. P. C., Ha, N. N., Agusa, T., Ikemoto, T., Tuyen, B. C., Tanabe, S., et al. (2010). Concentrations of trace elements in Meretrix spp. (Mollusca: Bivalva) along the coasts of Vietnam. Fisheries Science, 76(4), 677–686. doi:10.1007/s12562-010-0251-5.

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51(1–4), 135–151. doi:10.1080/03067319308027619.

    Article  CAS  Google Scholar 

  • Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., et al. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. Journal of Environmental Sciences, 22(1), 23–31. doi:10.1016/S1001-0742(09)60070-X.

    Article  Google Scholar 

  • Xu, L., Wang, T., Wang, J., & Lu, A. (2017). Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere, 173, 61–68. doi:10.1016/j.chemosphere.2017.01.046.

    Article  CAS  Google Scholar 

  • Yang, Z., Wang, Y., Shen, Z., Niu, J., & Tang, Z. (2009). Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials, 166(2–3), 1186–1194. doi:10.1016/j.jhazmat.2008.12.034.

    Article  CAS  Google Scholar 

  • Yap, C. K., Tan, S. G., Ismail, A., & Omar, H. (2002). Genetic variation of green-lipped mussel Perna viridis (Linnaeus) from the west coast of peninsular Malaysia. Zoological Studies, 41(4), 376–837.

    CAS  Google Scholar 

  • Yap, C. K., Ismail, A., Tan, S. G., & Rahim Ismail, A. (2004). Assessment of different soft tissues of the green-lipped mussel Perna viridis (Linnaeus) as biomonitoring agents of Pb: field and laboratory studies. Water, Air, and Soil Pollution, 153(1), 253–268. doi:10.1023/b:wate.0000019946.84885.94.

    Article  CAS  Google Scholar 

  • Yap, C. K., Aziran, Y., & Cheng, W. H. (2009). Distribution of heavy metal concentrations in different soft tissues and shells of the bivalve Psammotaea elongata and gastropod Faunus ater collected from Pantai Sri Tujuh, Kelantan. Journal of Sustainability Science and Management, 4(1), 66–74.

    CAS  Google Scholar 

  • Yap, C. K., Edward, F. B., & Tan, S. G. (2010). Identification of potential intertidal bivalves as biomonitors of heavy-metal contamination by using bivalve-sediment accumulation factors (BSAFs). Journal of Sustainability Science and Management, 5(1), 29–38.

    Article  CAS  Google Scholar 

  • Yap, C. K., Edward, F. B., & Tan, S. G. (2014). Concentrations of heavy metals in different tissues of the bivalve Polymesoda erosa: its potentials as a biomonitor and food safety concern. Pertanika Journal of Tropical Agricultural Science, 37(1), 19–38.

    Google Scholar 

  • Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585. doi:10.1016/j.envpol.2011.06.011.

    Article  CAS  Google Scholar 

  • Zerbe, J., Sobczynski, T., Elbanowska, H., & Siepak, J. (1999). Speciation of heavy metals in bottom sediments of lakes. Polish Journal of Environmental Studies, 8(5), 331–339.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Preventive Medicine Center of Tien Giang province, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Hop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hop, N., Thi Quynh Dieu, H. & Hai Phong, N. Metal speciation in sediment and bioaccumulation in Meretrix lyrata in the Tien Estuary in Vietnam. Environ Monit Assess 189, 299 (2017). https://doi.org/10.1007/s10661-017-5995-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5995-2

Keywords

Navigation