Skip to main content

Advertisement

Log in

Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil organic carbon (SOC) is a major indicator of long-term sustenance of agricultural production system. Apart from sustaining productivity, SOC plays a crucial role in context of climate change. Keeping in mind these potentials, spatial variation of SOC contents of a fruit orchard comprising several arid fruit plantations located at arid region of India is assessed in this study through geostatistical approaches. For this purpose, surface and subsurface soil samples from 175 locations from a fruit orchard spreading over 14.33 ha area were collected along with geographical coordinates. SOC content and soil physicochemical properties of collected soil samples were determined followed by geostatistical analysis for mapping purposes. Average SOC stock density of the orchard was 14.48 Mg ha−1 for 0- to 30-cm soil layer ranging from 9.01 Mg ha−1 in Carissa carandas to 19.52 Mg ha−1 in Prosopis cineraria block. Range of spatial variation of SOC content was found about 100 m, while two other soil physicochemical properties, e.g., pH and electrical conductivity (EC) also showed similar spatial trend. This indicated that minimum sampling distance for future SOC mapping programme may be kept lower than 100 m for better accuracy. Ordinary kriging technique satisfactorily predicted SOC contents (in percent) at unsampled locations with root-mean-squared residual (RMSR) of 0.35–0.37. Co-kriging approach was found slightly superior (RMSR = 0.26–0.28) than ordinary kriging for spatial prediction of SOC contents because of significant correlations of SOC contents with pH and EC. Uncertainty of SOC estimation was also presented in terms of 90 % confidence interval. Spatial estimates of SOC stock through ordinary kriging or co-kriging approach were also found with low uncertainty of estimation than non-spatial estimates, e.g., arithmetic averaging approach. Among different fruit block plantations of the orchard, the block with Prosopis cineraria (‘khejri’) has higher SOC stock density than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Batjes, N. H. (2006). Soil carbon stocks of Jordan and projected changes upon improved management of croplands. Geoderma, 132(3–4), 361–371.

    Article  CAS  Google Scholar 

  • Bhattacharya, T., Pal, D. K., Mandal, C., & Velayutham, M. (2000). Organic carbon stock in Indian soils and their geographical distribution. Current Science, 79, 655–660.

    Google Scholar 

  • Bishop, T. F. A., & Lark, R. M. (2008). A comparison of parametric and non-parametric methods for modelling a coregionalization. Geoderma, 148, 13–24.

    Article  Google Scholar 

  • Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (Second ed.). NY: Springer http://www.asdar-book.org/.

    Book  Google Scholar 

  • Carter, G. P., Miskewitz, R. J., Isukapalli, S., Mun, Y., Vyas, V., Yoon, S., Georgeopoulos, P., & Uchrin, C. G. (2011). Comparison of kriging and cokriging for the geostatistical estimation of specific capacity in the Newark Basin (NJ) aquifer system. Journal of Environmental Science and Health, Part A, Toxical Hazard Substances and Environmental Engineering, 46(4), 371–377.

    Article  CAS  Google Scholar 

  • Pan, C., Zhao, H., Zhao, X., Han, H., Wang, Y., & Li, J. (2013). Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization. PloS One, 8(1), e54827.

    Article  CAS  Google Scholar 

  • Conant, R. T., Paustian, K., & Elliott, E. T. (2001). Grassland management and conversion into grassland: effects on soil carbon. Ecological Applications, 11, 343–355.

    Article  Google Scholar 

  • Ersahin, S. (2001). Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science Society of America Journal, 67(6), 1848–1855.

    Article  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transforamtion of nitrogen cycle: recent trends, questions, and potential solutions. Science, 320, 889–892.

    Article  CAS  Google Scholar 

  • Goovaerts, P. (1998). Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of Soils, 27, 315–334.

    Article  CAS  Google Scholar 

  • Homma, K., Takeshi, H., Tatauhiko, S., Supapoj, N., Matsumoto, N., & Kabaki, N. (2003). Toposequential variation in soil fertility and rice productivity of rainfed lowland paddy fields in mini-watershed (Nong) in Northeast Thailand. Plant Production Science, 6(2), 147–153.

    Article  Google Scholar 

  • Lark, R. M. (2000). A comparison of some robust estimators of the variogram for use in soil survey. European Journal of Soil Science, 51, 137–157.

    Article  Google Scholar 

  • Martinez, G., Vanderlinden, K., Giraldez, J. V., Espejol, A. J., Rodriguez, E., Ordonez, R., & Muriel, J.L. (2009). Use of apparent electrical conductivity as secondary information for soil organic carbon spatial characterization. In: Estudios en la Zona no SaturadadelSuelo (Eds Orlando Silva, Rojas Ramirej and Jesus Carrera). Vol IX, Barcelona, pp. 1–8.

  • Mayes, M., Marin-Spiotta, E., Szymanski, L., Erdogan, M. A., Ozdogan, M., & Clayton, M. (2014). Soil type mediates effects of land use on soil carbon and nitrogen in the Konya Basin, Turkey. Geoderma, 232–234, 517–527.

    Article  Google Scholar 

  • McIntosh, P. O., & Allen, R. B. (1993). Soil pH declines and organic carbon increases under hawkweed (Hieraciumpilosella). New Zealand Journal of Ecology, 17(1), 59–60.

    Google Scholar 

  • Meghwal, P. R., Akath, S., Pradeep, K., & Morwal, B. R. (2014). Diversity, distribution and horticulturalpotential of Cordia myxa L.: a promising underutilized fruit species of arid and semiarid regions of India. Genetic Resources and Crop Evolution, 61(8), 1633–1643.

    Article  Google Scholar 

  • Min, K., Lehmeier, C. A., Ballantyne, F., Tatarko, A., & Billings, S. A. (2014). Differential effects of pH on temperature sensitivity of organic carbon and nitrogen decay. Soil Biology & Biochemistry, 76, 193–200.

    Article  CAS  Google Scholar 

  • Munoz-Rojas, M., Jordan, A., Zavala, L. M., De la Rosa, D., Abd-Elmabod, S. K., & Anaya-Romero, M. (2012a). Organic carbon stocks in Mediterranean soil types under different land uses (southern Spain). Solid Earth, 3, 375–386.

    Article  Google Scholar 

  • Munoz-Rojas, M., Jordan, A., Zavala, L. M., De la Rosa, D., Abd-Elmabod, S. K., & Anaya-Romero, M. (2012b). Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956–2007). Land Degradation & Development. doi:10.1002/ldr.2194.

    Google Scholar 

  • Pebesma, E. J., & Wesseling, C. G. (1998). Gstat, a program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24(1), 17–31.

    Article  Google Scholar 

  • Pebesma, Z. E. (2003). Gstat user’s manual. Dept. of Physical Geography, Utrecht University P.O. Box 80.115, 3508 TC, Utrecht, The Netherlands (http://www.gstat.org/gstat.pdf).

  • Pebesma, E.J., & Bivand, R.S. (2005). Classes and methods for spatial data in R. R News 5 (2), http://cran.r-project.org/doc/Rnews/.

  • Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–159.

    Article  CAS  Google Scholar 

  • Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernandez, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., & Walker, B. (2007). Global desertification: building a science for dryland development. Science, 316, 847–851.

    Article  CAS  Google Scholar 

  • Rossiter, D. G. (2012). Technical note: co-kriging with the gstat package of the R environment for statistical computing. http://www.css.cornell.edu/faculty/dgr2/teach/R/R_ck.pdf.

  • Sahrawat, K.L. (2006). Plant nutrients: sufficiency and requirements. In Encyclopedia of Soil Science, 2nd Edison (Ed. R.Lal), Philadelphia; 1306–1310.

  • Santra, P., Kumwat, R. N., Mertia, R. S., Mahla, H. R., & Sinha, N. K. (2012). Soil organic carbon stock density and its spatial variation within a typical agricultural farm from hot arid ecosystem of India. Current Science, 102(9), 1303–1309.

    CAS  Google Scholar 

  • Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A., & Whitford, W. G. (1990). Biological feedbacks in global desertification. Science, 247, 1043–1048.

    Article  CAS  Google Scholar 

  • Schrumpf, M., Schulze, E. D., Kaiser, K., & Schumacher, J. (2011). How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences, 8, 1193–1212.

    Article  CAS  Google Scholar 

  • Shyampura, R. L., Singh, S. K., Singh, R. S., Jain, B.L., & Gajbhiye, K. S. (2002). Soil series of Rajasthan. NBSS&LUP publication no. 95, NBSS&LUP, Nagpur, pp. 329.

  • Singh, S. K., Singh, A. K., Sharma, B. K., & Tarafdar, J. C. (2007b). Carbon stock and organic carbon dynamics in soils of Rajasthan, India. Journal of Arid Environment, 68, 408–421.

    Article  Google Scholar 

  • Singh, S. K., Kumar, M., Sharma, B. K., & Tarafdar, J. C. (2007a). Depletion of organic carbon, phosphorus, and potassium stock under a pearl millet based cropping system in the arid region of India. Arid Land Research and Management, 21(2), 119–131.

    Article  CAS  Google Scholar 

  • Thompson, J. A., & Kolka, R. K. (2005). Soil carbon storage estimation in a forested watershed using quantitative soil landscape modeling. Soil Science Society of America Journal, 69, 1086–1093.

    Article  CAS  Google Scholar 

  • United Nations. (2011). Global drylands: a UN system-wide response. Full Report. United Nations Environment Management Group. pp. 131.

  • Velayutham, M., Pal, D. K., & Bhattacharya, T. (2009). Organic carbon stocks in soils of India. In R. Lal, J. M. Kimble, & B. A. Stewart (Eds.), Global climate change and tropical ecosystems (pp. 71–96). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Vitharana, U. W. A., Van Meirvenne, M., Cockx, L., & Bourgeois, J. (2006). Identifying potential management zones in a layered soil using several sources of ancillary information. Soil Use Manage, 22, 405–413.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Watson, R. T., Noble, I. R., Bolin, B., Ravindramath, N. H., Verardo, D. J., & Dokken, D. J. (2000). Land use, land use change, and forestry (p. 375). Cambridge: Cambridge University Press.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (pp. 315). Chichester: John Wiley & Sons.

  • Wiesmeier, M., Barthold, F., Blank, F., & Kogel-Knabner, I. (2011). Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem. Plant and Soil, 340, 7–24.

    Article  CAS  Google Scholar 

  • Wiesmeier, M., Steffens, M., Kolbl, A., & Kogel-Knabner, I. (2009). Degradation and small scale spatial homogenization of top soils in intensively grazed steppes of Northern China. Soil Tillage Research, 104, 299–310.

    Article  Google Scholar 

Download references

Acknowledgment

We sincerely express our thanks to the Director, ICAR-Central Arid Zone Research Institute, Jodhpur for his encouragement and support to carry out the present study. We also express our thanks to technical persons involved in soil sampling, processing and laboratory determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akath Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Santra, P., Kumar, M. et al. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches. Environ Monit Assess 188, 529 (2016). https://doi.org/10.1007/s10661-016-5522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5522-x

Keywords

Navigation