Skip to main content
Log in

Monitoring of airborne particulate matter at mountainous urban sites

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentrations of various size fractions (TSP, PM10, PM2.5, and PM1.0) of particulate matter (PM) were measured at two mountainous sites, Buk Han (BH) and Gwan AK (GA), along with one ground reference site at Gwang Jin (GJ), located in Seoul, South Korea for the 4 years from 2010 to 2013. The daily average concentrations of TSP, PM10, PM2.5, and PM1.0 at BH were 47.9 ± 32.5, 37.0 ± 24.6, 20.6 ± 12.9, and 15.3 ± 9.53 μg m−3, respectively. These values were slightly larger than those measured at GA while much lower than those measured at the reference site (GJ). Seasonal variations in PM concentrations were consistent across all locations with a relative increase in concentrations observed in spring and winter. Correlation analysis showed clear differences in PM concentrations between the mountainous sites and the reference site. Analysis of these PM concentrations indicated that the distribution of PM in the mountainous locations was affected by a number of manmade sources from nearby locations, including both traffic and industrial emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed, E., Kim, K.-H., Shon, Z.-H., & Song, S.-K. (2015). Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmospheric Environment, 101, 125–133.

    Article  CAS  Google Scholar 

  • Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 8(2), 166–175.

    Article  CAS  Google Scholar 

  • Boogaard, H., Janssen, N. A., Fischer, P. H., Kos, G. P., Weijers, E. P., Cassee, F. R., et al. (2012). Contrasts in oxidative potential and other particulate matter characteristics collected near major streets and background locations. Environmental Health Perspectives, 120(2), 185–191.

    Article  CAS  Google Scholar 

  • Brook, R. D., Rajagopalan, S., Pope 3rd, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378.

    Article  CAS  Google Scholar 

  • Chan, L., Kwok, W., Lee, S., & Chan, C. (2001). Spatial variation of mass concentration of roadside suspended particulate matter in metropolitan Hong Kong. Atmospheric Environment, 35(18), 3167–3176.

    Article  CAS  Google Scholar 

  • Chen, C. F., Lian, Y., Yeh, H. C., & Wang, Y. C. (2014). Trend analysis and correlation analysis of PM2.5 and PM10 in Taipei City during 2006-2012. Advances in Environmental Protection, 04(04), 128–135.

    Article  Google Scholar 

  • Cheng, Y., Ho, K., Lee, S., & Law, S. (2006). Seasonal and diurnal variations of PM1.0, PM2.5 and PM10 in the roadside environment of Hong Kong. China Particuology, 4(06), 312–315.

    Article  CAS  Google Scholar 

  • Elminir, H. K. (2005). Dependence of urban air pollutants on meteorology. Science of the Total Environment, 350(1), 225–237.

    Article  CAS  Google Scholar 

  • Gehrig, R., & Buchmann, B. (2003). Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmospheric Environment, 37(19), 2571–2580.

    Article  CAS  Google Scholar 

  • Gomišček, B., Hauck, H., Stopper, S., & Preining, O. (2004). Spatial and temporal variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP—project. Atmospheric Environment, 38(24), 3917–3934.

    Article  Google Scholar 

  • Gugamsetty, B., Wei, H., Liu, C.-N., Awasthi, A., Hsu, S.-C., Tsai, C.-J., et al. (2012). Source characterization and apportionment of PM10, PM2. 5 and PM0. 1 by using positive matrix factorization. Aerosol and Air Quality Research, 12, 476–491.

    CAS  Google Scholar 

  • Hong, Y.-C., Pan, X.-C., Kim, S.-Y., Park, K., Park, E.-J., Jin, X., et al. (2010). Asian dust storm and pulmonary function of school children in Seoul. Science of the Total Environment, 408(4), 754–759.

    Article  CAS  Google Scholar 

  • Jones, A. M., Harrison, R. M., & Baker, J. (2010). The wind speed dependence of the concentrations of airborne particulate matter and NOX. Atmospheric Environment, 44(13), 1682–1690.

    Article  CAS  Google Scholar 

  • Khan, M. F., Shirasuna, Y., Hirano, K., & Masunaga, S. (2010). Characterization of PM 2.5, PM 2.5–10 and PM > 10 in ambient air, Yokohama, Japan. Atmospheric Research, 96(1), 159–172.

    Article  CAS  Google Scholar 

  • Kim, K.-H., & Kim, M.-Y. (2003). The effects of Asian dust on particulate matter fractionation in Seoul, Korea during spring 2001. Chemosphere, 51(8), 707–721.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Hong, Y.-J., Szulejko, J. E., Kang, C.-H., Chambers, S., Feng, X., et al. (2016). Airborne iron across major urban centers in South Korea between 1991 and 2012. Science of the Total Environment, 550, 309–320.

    Article  CAS  Google Scholar 

  • Kim, H.-S., Huh, J.-B., Hopke, P. K., Holsen, T. M., & Yi, S.-M. (2007). Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmospheric Environment, 41(32), 6762–6770.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Pandey, S. K., Nguyen, H. T., Chung, S.-Y., Cho, S.-J., Kim, M.-Y., et al. (2010). Long-term behavior of particulate matters at urban roadside and background locations in Seoul, Korea. Transportation Research Part D: Transport and Environment, 15(3), 168–174.

    Article  Google Scholar 

  • Li, X., Wang, L., Wang, Y., Wen, T., Yang, Y., Zhao, Y., et al. (2012). Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmospheric Environment, 50, 278–286.

    Article  CAS  Google Scholar 

  • Lianou, M., Chalbot, M., Vei, I., Kotronarou, A., Kavouras, I., Hoek, G., et al. (2013). The impact of wind on particle mass concentrations in four European urban areas. Global NEST Journal, 15(2), 188–194.

    Google Scholar 

  • Nguyen, H. T., Kim, M.-Y., & Kim, K.-H. (2010). The influence of long-range transport on atmospheric mercury on Jeju Island, Korea. Science of the Total Environment, 408(6), 1295–1307.

    Article  CAS  Google Scholar 

  • NIER (2013). Annual report of air quality in Korea 2012.

  • Oh, H.-R., Ho, C.-H., Kim, J., Chen, D., Lee, S., Choi, Y.-S., et al. (2015). Long-range transport of air pollutants originating in China: a possible major cause of multi-day high-PM 10 episodes during cold season in Seoul, Korea. Atmospheric Environment, 109, 23–30.

    Article  CAS  Google Scholar 

  • Pandey, S. K., Kim, K.-H., Chung, S.-Y., Cho, S. J., Kim, M. Y., & Shon, Z.-H. (2008). Long-term study of NOX behavior at urban roadside and background locations in Seoul, Korea. Atmospheric Environment, 42(4), 607–622.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Moreno, T., Viana, M. M., Castillo, S., Pey, J., et al. (2008). Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 42(17), 3964–3979.

    Article  CAS  Google Scholar 

  • Tecer, L. H., Süren, P., Alagha, O., Karaca, F., & Tuncel, G. (2008). Effect of meteorological parameters on fine and coarse particulate matter mass concentration in a coal-mining area in Zonguldak, Turkey. Journal of the Air & Waste Management Association, 58(4), 543–552.

    Article  CAS  Google Scholar 

  • Vellingiri, K., Kim, K. H., Ma, C. J., Kang, C. H., Lee, J. H., Kim, I. S., et al. (2015). Ambient particulate matter in a central urban area of Seoul, Korea. Chemosphere, 119, 812–819.

    Article  CAS  Google Scholar 

  • Wang, W., Tang, D., Liu, H., Yue, X., Pan, Z., & Ding, Y. (2000). Research on current pollution status and pollution characteristics of PM2. 5 in China. Research of Environmental Sciences, 13(1), 1–5.

    Google Scholar 

  • WHO (2006). WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. World Health Organization.

  • Ye, B., Ji, X., Yang, H., Yao, X., Chan, C. K., Cadle, S. H., et al. (2003). Concentration and chemical composition of PM2.5 in shanghai for a 1-year period. Atmospheric Environment, 37(4), 499–510.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (MEST) (No. 2009-0093848). WMP acknowledges support made by the National Research Foundation of Korea (NFR) grant funded by the Korea government (MSIP) (2016R1C1B2016366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hyun Kim.

Electronic supplementary material

ESM 1

(DOCX 683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Kim, KH., Dutta, T. et al. Monitoring of airborne particulate matter at mountainous urban sites. Environ Monit Assess 188, 490 (2016). https://doi.org/10.1007/s10661-016-5501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5501-2

Keywords

Navigation