Skip to main content

Advertisement

Log in

Performance assessment of geospatial simulation models of land-use change—a landscape metric-based approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Performance evaluation is a critical step when developing land-use and cover change (LUCC) models. The present study proposes a spatially explicit model performance evaluation method, adopting a landscape metric-based approach. To quantify GEOMOD model performance, a set of composition- and configuration-based landscape metrics including number of patches, edge density, mean Euclidean nearest neighbor distance, largest patch index, class area, landscape shape index, and splitting index were employed. The model takes advantage of three decision rules including neighborhood effect, persistence of change direction, and urbanization suitability values. According to the results, while class area, largest patch index, and splitting indices demonstrated insignificant differences between spatial pattern of ground truth and simulated layers, there was a considerable inconsistency between simulation results and real dataset in terms of the remaining metrics. Specifically, simulation outputs were simplistic and the model tended to underestimate number of developed patches by producing a more compact landscape. Landscape-metric-based performance evaluation produces more detailed information (compared to conventional indices such as the Kappa index and overall accuracy) on the model’s behavior in replicating spatial heterogeneity features of a landscape such as frequency, fragmentation, isolation, and density. Finally, as the main characteristic of the proposed method, landscape metrics employ the maximum potential of observed and simulated layers for a performance evaluation procedure, provide a basis for more robust interpretation of a calibration process, and also deepen modeler insight into the main strengths and pitfalls of a specific land-use change model when simulating a spatiotemporal phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-ahmadi, K., See, L., Heppenstall, A., & Hogg, J. (2008). Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia. Ecological Complexity, 6(2), 80–101.

    Article  Google Scholar 

  • Al-shalabi, L., Billa, L., Pradhan, B., Mansor, S., & Al-sharif, A. A. A. (2012). Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environmental Earth Sciences, 70(1), 425–437.

    Article  Google Scholar 

  • Asgarian, A., Amiri, B. J., & Sakieh, Y. (2014). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosystems, 18(1), 209–222.

    Article  Google Scholar 

  • Botequila, A. l., Miller, J., Ahem, J., & McGarigal, K. (2006). Measuring landscapes: a planner’s handbook. Washington: Island Press. 272p.

    Google Scholar 

  • Clarke, K. C., Hoppen, S., & Gaydos, L. (1997). A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Journal of Environment and Planning B: Planning & Design, 24(2), 247–261.

    Article  Google Scholar 

  • Dezhkam, S., Amiri, B. J., Darvishsefat, A. A., & Sakieh, Y. (2014). Simulating urban growth dimensions and scenario prediction: a case study of Rasht County, Guilan, Iran. Geojournal, 79(5), 591–604.

    Article  Google Scholar 

  • Dibari, J. N. (2007). Evaluation of five landscape-level metrics for measuring the effects of urbanization on landscape structure: the case of Tucson, Arizona, USA. Landscape and Urban Planning, 79(3–4), 308–313.

    Article  Google Scholar 

  • Dietzel, C., Herold, M., Hemphill, J. J., & Clarke, K. C. (2005). Spatio-temporal dynamics in California’s Central Valley: empirical links to urban theory. International Journal of Geographic Information Science, 19(2), 175–195.

    Article  Google Scholar 

  • Eastman, R. (2009). Idrisi Taiga Version 16.01, Clark Laboratories, Clark University, Worcester, MA.

  • Farina, A. (2006). Principles and methods in landscape ecology: toward a science of landscape. Netherland: Springer publication. 412p.

    Google Scholar 

  • Feng, Y., Liu, Y., Tong, X., Liu, M., & Deng, S. (2011). Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102(3), 188–196.

    Article  Google Scholar 

  • Forman, K. E., & Godron, M. (1986). Landscape ecology. New York: Wiley. 432p.

    Google Scholar 

  • Guan, D., Li, H. F., Inohae, T., Su, W., Nagaie, T., & Hokao, K. (2011). Modeling urban land use change by integration of cellular automata and Markov model. Ecological Modeling, 222(20–22), 3761–3772.

    Article  Google Scholar 

  • Hasani Sangani, M., Amiri, B. J., Alizadeh Shabani, A., Sakieh, Y., & Ashrafi, S. (2014). Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea. Environmental Science and Pollution Research, 22(7), 4985–5002.

    Article  Google Scholar 

  • Herold, M., Couclelis, H., & Clarke, K. C. (2005). The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 29(4), 369–399.

    Article  Google Scholar 

  • Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sensing of Environment, 86(3), 286–302.

    Article  Google Scholar 

  • Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and urban landscape metrics to describe structures and changes in urban land uses. Environment and planning B: planning and design, 34(8), 1443–1458.

    Article  Google Scholar 

  • Iranian Statistics Center. (2012). General census of population and housing of Karaj City.

  • Jaafari, S., Sakieh, Y., Shabani, A. A., Danehkar, A., & Nazarisamani, A. (2015). Landscape change assessment of reservation areas using remote sensing and landscape metrics (case study: Jajroud reservation, Iran). Environment, Development and Sustainability. doi:10.1007/s10668-015-9712-4.

    Google Scholar 

  • Jafarnezhad, J., Salmanmahiny, A., & Sakieh, Y. (2015). Subjectivity versus objectivity—a comparative study between Brute Force method and Genetic Algorithm for calibrating the SLEUTH urban growth model. Urban Planning and development. doi:10.1061/(ASCE)UP.1943-5444.0000307.

    Google Scholar 

  • Jokar, J., Helbich, A., & Noronha, E. (2013). Spatiotemporal simulation of urban growth patterns using agent-based modeling: the case of Tehran. Cities, 32, 33–42.

    Article  Google Scholar 

  • Luck, M., & Wu, J. G. (2002). A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology, 17(4), 327–339.

    Article  Google Scholar 

  • Lechner, A. M., Reinke, K. J., Wang, Y., & Bastin, L. (2013). Interactions between landcover pattern and geospatial processing methods: effects on landscape metrics and classification accuracy. Ecological Complexity, 15, 71–82.

    Article  Google Scholar 

  • Makhdoum, F. M. (2007). Fundamental of land use planning. Tehran: University of Tehran press.

    Google Scholar 

  • Mahiny, A. S., & Clarke, K. C. (2012). Guiding SLEUTH land-use/land-cover change modeling using multicriteria evaluation: towards dynamic sustainable land-use planning. Environment and planning B: planning and design, 39(5), 925–944.

    Article  Google Scholar 

  • Mahiny, A. S., & Clarke, K. C. (2013). Simulating hydrologic impacts of urban growth using SLEUTH, multi criteria evaluation and runoff modeling. Journal of Environmental Informatics, 22(1), 27–38.

    Article  Google Scholar 

  • Mas, J. F., Vega, A. P., & Clark, C. (2010). Assessing “spatially explicit” land use/cover change models. Proceedings of the IUFRO Landscape Ecology Working Group International Conference, Bragança, Portugal.

  • Mc Garigal, K., & Marks, B. J. (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure, USDA Forest Service.

  • O’Neill, R. V., Riitters, K. H., Wickham, J. D., & Bruce Jones, K. (1999). Landscape pattern metrics and regional assessment. Ecosystem Health, 5(4), 225–233.

    Article  Google Scholar 

  • Onsted, J. A., & Chowdhury, R. R. (2014). Dose zoning matter? A comparative analysis of landscape change in Redland, Florida using cellular automata. Landscape and Urban Planning, 121, 1–18.

    Article  Google Scholar 

  • Pearce, J., & Simon, F. (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3), 225–245.

    Article  Google Scholar 

  • Pham, H. M., Yamaguchi, Y., & Bui, T. Q. (2011). A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landscape and Urban Planning, 100(3), 223–230.

    Article  Google Scholar 

  • Poelmans, L., & Rompaey, A. (2009). Detecting and modelling spatial patterns of urban sprawl in highly fragmented areas: a case study in the Flunders-Brussels region. Landscape and Urban Planning, 93(1), 10–19.

    Article  Google Scholar 

  • Pontius, R. G., Jr. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing, 66(8), 1011–1016.

    Google Scholar 

  • Pontius, R. G., Jr., & Batchu, K. (2003). Using the relative operating characteristic to quantify certainty in prediction of location of land cover change in India. Transactions in GIS, 7(4), 467–484.

    Article  Google Scholar 

  • Pontius, R. G., Jr., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429.

    Article  Google Scholar 

  • Pontius, R. G., Jr., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 85(1–3), 239–248.

    Article  Google Scholar 

  • Pontius, R. G., Jr., & Si, K. (2014). The total operating characteristic to measure diagnostic ability for multiple thresholds. International Journal of Geographical Information Science, 28(3), 570–583.

    Article  Google Scholar 

  • Pontius, R. G., Jr., Cornell, D. C., & Hall, C. A. S. (2001). Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agriculture, Ecosystems and Environment, 85(1–3), 191–203.

    Article  Google Scholar 

  • Rafiee, R., Mahini, A. S., & Khorasani, N. (2009). Assessment of changes in urban green spaces of Mashad city using satellite data. International Journal of Applied Earth Observation and Geoinformation, 11(6), 431–438.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. New York: McGraw Hill.

    Google Scholar 

  • Sakieh, Y. (2013). Urban sustainability analysis through the SLEUTH urban growth model and multi criteria evaluation: a case study of Karaj City. Dissertation, University of Tehran.

  • Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2014a). Scenario-based evaluation of urban development sustainability: An integrative modeling approach to compromise between urbanization suitability index and landscape pattern. Environment, Development and Sustainability, 17(6), 1343–1365.

    Article  Google Scholar 

  • Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2014b). Simulating urban expansion and scenario prediction using a cellular automata urban growth model, SLEUTH, through a case study of Karaj City, Iran. Housing and Built Environment, 30(4), 591–611.

    Article  Google Scholar 

  • Sakieh, Y., Salmanmahiny, A., Jafarnezhad, J., Mehri, A., Kamyab, H., & Galdavi, S. (2015). Evaluating the strategy of decentralized urban land-use planning in a developing region. Land Use Policy, 48, 534–551.

    Article  Google Scholar 

  • Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552.

    Article  Google Scholar 

  • Soares-Filho, B. S., Cerqueira, G. C., & Pennachin, C. L. (2002). DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling, 154(3), 217–235.

    Article  Google Scholar 

  • Stevens, D., & Dragicevic, S. (2007). A GIS-based irregular cellular automata model of land-use change. Environmental and Planning B: Planning and Design, 34(4), 708–724.

    Article  Google Scholar 

  • Sullivan, D. O., & Torrens, P. M. (2000). Cellular models of urban systems, CASA working paper series, paper 22, available online at: www.casa.ucl.uk.

  • Su, S., Xiao, R., & Zhang, Y. (2011). Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Applied Geography, 32(2), 360–375.

    Article  Google Scholar 

  • Tang, J., Wang, L., & Yao, Z. (2008). Analyses of urban landscape dynamics using multi-temporal satellite images: a comparison of two petroleum-oriented cities. Landscape and Urban Planning, 87(4), 269–278.

    Article  Google Scholar 

  • Tian, G., Ouyang, Y., Quan, Q., & Wu, J. (2011). Simulating spatiotemporal dynamics of urbanization with multi-agent systems—a case study of the Phoenix metropolitan region, USA. Ecological Modelling, 222(5), 1129–1138.

    Article  Google Scholar 

  • Tobler, W. R. (1969). Geographical filters and their inverses. Geographical Analysis, 1(3), 234–253.

    Article  Google Scholar 

  • Turner, M. G., Gardner, R. H., & O’Neill, R. V. (2001). Landscape ecology in theory and practice: pattern and process. New York: Springer.

    Google Scholar 

  • Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. A. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental Management, 30(3), 391–405.

    Article  Google Scholar 

  • Wang, H., He, S., Liu, X., Dai, L., Pan, P., Hong, S., & Zhang, W. (2012). Simulating urban expansion using a cloud-based cellular automata model: a case study of Jiangxia, Wuhan, China. Landscape and Urban Planning, 110, 99–112.

    Article  Google Scholar 

  • Weng, Y. C. (2007). Spatiotemporal changes of landscape pattern in response to urbanization. Landscape and Urban Planning, 81(4), 341–35.

    Article  Google Scholar 

  • Wu, X., Hu, Y., He, H. S., Bu, R., Onsted, J., & Xi, F. (2009). Performance evaluation of the SLEUTH model in the Shenyang metropolitan area of northeastern China. Environmental Modeling and Assessment, 14(2), 221–230.

    Article  CAS  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Sakieh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakieh, Y., Salmanmahiny, A. Performance assessment of geospatial simulation models of land-use change—a landscape metric-based approach. Environ Monit Assess 188, 169 (2016). https://doi.org/10.1007/s10661-016-5179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5179-5

Keywords

Navigation