Skip to main content
Log in

Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 07 March 2016

Abstract

Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1–C7) and three principal components (PC1–PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.

    Article  CAS  Google Scholar 

  • Aiuppa, A., Bellomo, S., Brusca, L., D’Alessandro, W., & Federico, C. (2003). Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Applied Geochemistry, 18, 863–882.

    Article  CAS  Google Scholar 

  • Arnell, N. W. (1999). The effect of climate change on hydrological regimes in Europe: a continental perspective. Global Environmental Change, 9, 5–23.

    Article  Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.

    Article  CAS  Google Scholar 

  • Cartwright, I., & Weaver, T. R. (2005). Hydrogeochemistry of the Goulburn Valley region of the Murray Basin, Australia: implications for flow paths and resources vulnerability. Hydrogeology Journal, 13, 752–770.

    Article  CAS  Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353, 294–313.

    Article  CAS  Google Scholar 

  • Cramer, V., & Hobbs, R. J. (2002). Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: impacts and possible management responses. Austral Ecology, 27, 546–564.

    Article  Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology. New York: John Wiley & Sons Inc.

    Google Scholar 

  • Day, J. A. (1993). The major ion chemistry of some southern African saline systems. Hydrobiologia, 267, 37–59.

    Article  CAS  Google Scholar 

  • Domros, M., & Peng, G. (1988). The climate of China. Berlin: Springer.

    Book  Google Scholar 

  • Dragon, K. (2006). Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). Journal of Hydrology, 331, 272–279.

    Article  Google Scholar 

  • Dragon, K., & Gorski, J. (2009). Identification of hydrogeochemical zones in postglacial buried valley aquifer (Wielkopolska Buried Valley aquifer, Poland). Environmental Earth Sciences, 58, 859–866.

    Google Scholar 

  • Dragon, K., & Gorski, J. (2015). Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environmental Earth Sciences, 73, 2153–2167.

    Article  CAS  Google Scholar 

  • Fontes, J. C. h., Louvat, D., Michelot, J. L., & Soreau, S. (1988). Isotopic content of aqueous sulphate, indicators of the origin of mineralization in crystalline rock groundwaters. In Proceedings IAH symposium on the hydrogeology and safety of radioactive and industrial hazardous waste disposal (pp. 325–341). Doc. BRGM 160, OrleAans.

  • Garg, R. K., Rao, R. J., Uchchariya, D., Shukla, G., & Saksena, D. N. (2010). Seasonal variations in water quality and major threats to Ramsagar reservoir, India. African Journal of Environmental Science and Technology, 4(2), 61–76.

    CAS  Google Scholar 

  • George, R. J., McFarlane, D. J., & Nulsen, R. A. (1997). Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeology Journal, 5, 6–21.

    Article  Google Scholar 

  • Guler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells–Owens valley area, southeastern California, USA. Journal of Hydrology, 285, 177–198.

    Article  CAS  Google Scholar 

  • Guler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal, 10, 455–474.

    Article  CAS  Google Scholar 

  • Hagg, W., Braun, L. N., Kuhn, M., & Nesgaard, T. L. (2007). Modeling of hydrological response to climate change in glacierized Central Asian catchments. Journal of Hydrology, 332, 40–53.

    Article  Google Scholar 

  • Han, D., Liang, X., Jin, M., Currell, J. M., Han, Y., & Song, X. (2009). Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China. Environmental Management, 44, 243–255.

    Article  Google Scholar 

  • Helstrup, T., Jorgensen, N. O., & Banoeng-Yakubo, B. (2007). Investigation of hydrochemical characteristics of groundwater from Cretaceous–Eocene limestone aquifers in southern Ghana and Togo using hierarchical cluster analysis. Hydrogeology Journal, 15, 977–989.

    Article  CAS  Google Scholar 

  • Huang, G., Sun, J., Zhang, Y., Chen, Z., & Liu, F. (2013). Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Science of the Total Environment, 463–464, 209–221.

    Article  Google Scholar 

  • Huh, Y., Tsoi, M. Y., Zaitsev, A., & Edmond, M. (1998a). The fluvial geochemistry of the rivers of eastern Siberia: I. Tributaries of the Lena river draining the sedimentary platform of the Siberian craton. Geochimica et Cosmochimica Acta, 62, 1657–1676.

    Article  CAS  Google Scholar 

  • Huh, Y., Babich, D., Zaitsev, A., & Edmond, J. M. (1998b). The fluvial geochemistry of the rivers of eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochimica et Cosmochimica Acta, 62, 2053–2075.

    Article  CAS  Google Scholar 

  • Jahn, B. M., Wu, F., & Chen, B. (2000). Granitoids of the central Asian orogenic belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91, 181–193.

    Article  Google Scholar 

  • Jolly, I. D., McEwan, K. L., & Holland, K. L. (2008). A review of groundwater–surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology, 1, 43–58.

    Article  CAS  Google Scholar 

  • Kimbadi, S., Vandelannoote, A., Deelstra, H., Mbemba, M., & Ollevier, F. (1999). Chemical composition of the small rivers of the north-western part of Lake Tanganyika. Hydrobiologia, 407, 75–80.

    Article  CAS  Google Scholar 

  • Lipfert, G., Reeve, A. S., Sidle, W. C., & Marvinney, R. (2006). Geochemical patterns of arsenic-enriched ground water in fractured, crystalline bedrock, Northport, Maine, USA. Applied Geochemistry, 21, 528–545.

    Article  CAS  Google Scholar 

  • Ma, L. (2002). Geological atlas of China. Beijing: Geological Press (in Chinese).

    Google Scholar 

  • Maxey, G. B. (1968). Hydrogeology of desert basins. Ground Water, 6, 10–22.

    Article  Google Scholar 

  • Maya, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Hydrological Journal, 172, 31–59.

    Article  Google Scholar 

  • Melack, J. M. (1983). Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia, 105, 223–230.

    Article  Google Scholar 

  • Menzel, L., & Burger, G. (2002). Climate change scenarios and runoff response in the Mulde catchment (southern Elbe, Germany). Journal of Hydrology, 267, 53–64.

    Article  Google Scholar 

  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287, 401–428.

    Article  CAS  Google Scholar 

  • Meyer, J. L., McDowell, W. H., Bott, T. L., Elwood, J., Ishizaki, C., Melack, J. M., Peckarsky, B., Peterson, B., & Rublee, P. (1988). Elemental dynamics in streams. Journal of the North American Benthological Society, 7, 410–432.

    Article  Google Scholar 

  • Monjerezi, M., Vogt, R. D., Aagaard, P., & Saka, J. D. K. (2011). Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Applied Geochemistry, 26, 1399–1413.

    Article  CAS  Google Scholar 

  • Noh, H., Huh, Y., Qin, J., & Ellis, A. (2009). Chemical weathering in the three rivers region of Eastern Tibet. Geochimica et Cosmochimica Acta, 73, 1857–1877.

    Article  CAS  Google Scholar 

  • Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrological Processes, 21, 1482–1495.

    Article  CAS  Google Scholar 

  • Pawellek, F., Frauenstein, F., & Veizer, J. (2002). Hydrochemistry and isotope geochemistry of the upper Danube River. Geochimica et Cosmochimica Acta, 66, 3839–3854.

    Article  CAS  Google Scholar 

  • Pilla, G., Sacchi, E., Zuppi, G., Braga, G., & Ciancetti, G. (2006). Hydrochemistry and isotope geochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy. Hydrogeology Journal, 14, 795–808.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions of the American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Plummer, L. N., Busby, J. F., Lee, R. W., & Hanshaw, B. B. (1990). Geochemical modelling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resources Research, 26, 1981–2014.

    Article  Google Scholar 

  • Rosen, M., & Jones, S. (1998). Controls on the chemical composition of groundwater from alluvial aquifers in the Wanaka and Wakatipu basins, central Otago, New Zealand. Hydrogeology Journal, 6, 264–268.

    Article  Google Scholar 

  • Stadler, S., Osenbrück, K., Suckow, A. O., Himmelsbach, T., & Hötzl, H. (2010). Groundwater flow regime, recharge and regional-scale solute transport in the semi-arid Kalahari of Botswana derived from isotope hydrology and hydrochemistry. Journal of Hydrology, 388, 291–303.

    Article  CAS  Google Scholar 

  • Stetzenbach, K. J., Hodge, V. F., Guo, C., Farnham, I. M., & Johannesson, K. H. (2001). Geochemical and statistical evidence of deep carbonate groundwater within overlying volcanic rock aquifers/aquitards of southern Neveda, USA. Journal of Hydrology, 243, 254–271.

    Article  CAS  Google Scholar 

  • Stiff, H. A. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3, 15–16.

    Article  Google Scholar 

  • Sun, J., Ye, J., Wu, W., Ni, X., Bi, S., Zhang, Z., Liu, W., & Meng, J. (2010). Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology, 38, 515–518.

    Article  CAS  Google Scholar 

  • Toran, L. E., & Saunders, J. A. (1999). Modeling alternative paths of chemical evolution of Na-HCO3-type ground water near Oak Ridge, Tennessee, USA. Hydrological Journal, 7, 355–364.

    Google Scholar 

  • UNEP (1992). World atlas of desertification. London: United Nations Environment Programme.

    Google Scholar 

  • Usunoff, E. J., & Guzman-Guzman, A. (1989). Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analyses. Ground Water, 27, 27–34.

    Article  CAS  Google Scholar 

  • Van den Brink, C., Frapporti, G., Griffioen, J., & Jan Zaadnoordijk, W. (2007). Statistical analysis of anthropogenic versus geochemical-controlled differences in groundwater composition in The Netherlands. Journal of Hydrology, 336, 470–480.

    Article  Google Scholar 

  • Wang, S. W., Liu, C. W., & Jang, C. S. (2007). Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry, 22, 460–476.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses (3rd ed.). Springer: New York.

    Book  Google Scholar 

  • WHO (2008). Guidelines for drinking water quality. Geneva: World Health Organization.

    Google Scholar 

  • XETCAS (Xinjiang Expedition Team of the Chinese Academy of Sciences), IGCAS (Institute of Geography of the Chinese Academy of Sciences), & DGBNU (Department of Geography of Beijing Normal University) (1978). Geomorphology in Xinjiang. Beijing: Science Press (in Chinese).

    Google Scholar 

  • Xu, C. C., Chen, Y., Hamid, Y., Tashpolat, T., Chen, Y., Ge, H., & Li, W. (2009). Long-term change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrological Processes, 23, 2045–2055.

    Article  Google Scholar 

  • Xu, C. C., Chen, Y., Yang, Y., Hao, X., & Shen, Y. (2010). Hydrology and water resources variation and its response to regional climate change in Xinjiang. Journal of Geographical Sciences, 20, 599–612.

    Article  Google Scholar 

  • Yidana, S. M. (2010). Groundwater classification using multivariate statistical methods: southern Ghana. Journal of African Earth Sciences, 57, 455–469.

    Article  CAS  Google Scholar 

  • Zghibi, A., Merzougui, A., Zouhri, L., & Tarhouni, J. (2014). Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-east of Tunisia). Journal of African Earth Sciences, 89, 1–15.

    Article  CAS  Google Scholar 

  • Zhu, B., & Yang, X. (2007). The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China. Chinese Science Bulletin, 52, 2123–2129.

    Article  CAS  Google Scholar 

  • Zhu, B., & Yang, X. (2010). The origin and distribution of soluble salts in the sand seas of northern China. Geomorphology, 123, 232–242.

    Article  Google Scholar 

  • Zhu, G. F., Li, Z. Z., Su, Y. H., Ma, J. Z., & Zhang, Y. Y. (2007). Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. Journal of Hydrology, 333, 239–251.

    Article  CAS  Google Scholar 

  • Zhu, B., Yang, X., Rioual, P., Qin, X., Liu, Z., Xiong, H., & Yu, J. J. (2011). Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Applied Geochemistry, 26, 1535–1548.

    Article  CAS  Google Scholar 

  • Zhu, B., Yu, J., Qin, X., Rioual, P., & Xiong, H. (2012a). Climatic and geological factors contributing to the natural water chemistry in an arid environment from watersheds in northern Xinjiang, China. Geomorphology, 153–154, 102–114.

    Article  Google Scholar 

  • Zhu, B., Yang, X., Liu, Z., Rioual, P., Li, C., & Xiong, H. (2012b). Geochemical compositions of soluble salts in aeolian sands from the Taklamakan and Badanjilin deserts in northern China, and their influencing factors and environmental implications. Environmental Earth Sciences, 66, 337–353.

    Article  CAS  Google Scholar 

  • Zhu, B., Yu, J., Qin, X., Rioual, P., Liu, Z., Zhang, Y., Jiang, F., Mu, Y., Li, H., Ren, X., & Xiong, H. (2013a). The significance of mid-latitude rivers for weathering rates and chemical fluxes: evidence from northern Xinjiang rivers. Journal of Hydrology, 486, 151–174.

    Article  CAS  Google Scholar 

  • Zhu, B., Yu, J., Qin, X., Rioual, P., Zhang, Y., Liu, Z., Mu, Y., Li, H., Ren, X., & Xiong, H. (2013b). Identification of rock weathering and environmental control in arid catchments (northern Xinjiang) of Central Asia. Journal of Asian Earth Sciences, 66, 277–294.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant no.: 41371060) and the Kezhen Young Talent Project of the IGSNRR-CAS (Grant no.: 2013RC101). The author is very grateful to Profs. Patrick Rioual, Xiaoguang Qin, Jingjie Yu, and Xiaoping Yang for their generous help in the research work. Sincere thanks are extended also to the editor Prof. Yu-Pin Lin and four anonymous reviewers for their incisive reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binq-Qi Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The frequency distribution diagram of chemical and physical parameters in the water samples analyzed in this study. (GIF 193 kb)

High resolution image (EPS 230 kb)

Fig. S2

The log-frequency distribution diagram of chemical and physical parameters in the water samples analyzed in this study. (GIF 234 kb)

High resolution image (EPS 742 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, BQ., Wang, YL. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia. Environ Monit Assess 188, 66 (2016). https://doi.org/10.1007/s10661-015-5075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5075-4

Keywords

Navigation