Skip to main content
Log in

Hair concentration of essential trace elements in adult non-exposed Russian population

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Appropriate reference values of hair trace element content are required for correct interpretation of biomonitoring data. The primary objective of the current study was to estimate the reference values of selected essential trace elements in hair of adult Russian population. Involved in current investigation were 7256 occupationally non-exposed adults aged from 20 to 60 years and living in the European part of Russia. Occipital hair essential metal and metalloid (Co, Cr, Cu, Fe, Mn, Se, V, Zn) content was estimated using inductively coupled plasma mass spectrometry. The reference ranges were calculated in accordance with the International Union of Pure and Applied Chemistry (IUPAC) recommendations. Women were characterized by 55, 18, 58, and 7 % higher values of hair Co, Cu, Mn, and Zn content as compared to the values observed in men. At the same time, hair Cr, Fe, Se, and V concentration in men significantly exceeded the respective female values by 65, 13, 20, and 56 %. Consequently, the reference ranges of essential hair trace elements content should be separately calculated for both men and women. The obtained reference ranges for hair Co, Cr, Cu, Fe, Mn, Se, V, and Zn in men were 0.11–0.67, 0.007–0.045, 10.4–22.6, 11.1–40.5, 0.24–1.05, 0.089–0.480, 0.014–0.083, and 125.7–262.8 μg/g, respectively. The respective values estimated for women were 0.06–0.40, 0.011–0.085, 12.1–44.5, 8.9–25.6, 0.32–2.05, 0.094–0.504, 0.010–0.056, and 140.0–315.1 μg/g. The reference ranges for hair Co (0.07–0.50), Cr (0.009–0.073), Cu (11.8–29.2), Fe (9.6–31.5), Mn (0.29–1.76), Se (0.093–0.482), V (0.011–0.069), and Zn (134.7–301.9) content (μg/g) in the general cohort were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aftanas, L. I., Berezkina, E. S., Bonitenko, E. Y., Varenik, V. I., Grabeklis, A. R., Demidov, V. A., Kiselev, M. F., Nechiporenko, S. P., Nikolaev, V. A., Skalny, A. V., & Skalnaya, M. G. (2011). Element status of population of Russia. Part II. In A. V. Skalny & M. F. Kiselev (Eds.), Element status of population of Central Federal Region. Saint Petersburg: ELBI-SPb.

    Google Scholar 

  • Anderson, R. A. (2000). Chromium in the prevention and control of diabetes. Diabetes Metabolism, 26(1), 22–7.

    CAS  Google Scholar 

  • Anderson, R. A., & Kozlovsky, A. S. (1985). Chromium intake, absorption and excretion of subjects consuming self-selected diets. The American Journal of Clinical Nutrition, 41(6), 1177–1183.

    CAS  Google Scholar 

  • Aydin, I., Yuksel, U., Guzel, R., Ziyadanogullari, B., & Aydin, F. (2010). Determination of trace elements in Turkish wines by ICP-OES and HG-ICP-OES. Atomic Spectroscopy, 31(2), 67.

    Google Scholar 

  • Bales, C. W., Freeland-Graves, J. H., Askey, S., Behmardi, F., Pobocik, R. S., Fickel, J. J., & Greenlee, P. (1990). Zinc, magnesium, copper, and protein concentrations in human saliva: age-and sex-related differences. The American Journal of Clinical Nutrition, 51(3), 462–469.

    CAS  Google Scholar 

  • Barbieri, F. L., Cournil, A., Sarkis, J. E. S., Bénéfice, E., & Gardon, J. (2011). Hair trace elements concentration to describe polymetallic mining waste exposure in Bolivian Altiplano. Biological Trace Element Research, 139(1), 10–23.

    Article  CAS  Google Scholar 

  • Bass, D. A., Hickok, D., Quig, D., & Urek, K. (2001). Trace element analysis in hair: factors determining accuracy, precision, and reliability. Alternative Medicine Review, 6(5), 472–481.

    CAS  Google Scholar 

  • Bencko, V. (1995). Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology, 101(1), 29–39.

    Article  CAS  Google Scholar 

  • Borel, M. J., Smith, S. M., Derr, J., & Beard, J. L. (1991). Day-to-day variation in iron-status indices in healthy men and women. The American Journal of Clinical Nutrition, 54(4), 729–735.

    CAS  Google Scholar 

  • Chojnacka, K., Zielińska, A., Górecka, H., Dobrzański, Z., & Górecki, H. (2010). Reference values for hair minerals of Polish students. Environmental Toxicology and Pharmacology, 29(3), 314–319.

    Article  CAS  Google Scholar 

  • Christensen, J. M. (1995). Human exposure to toxic metals: factors influencing interpretation of biomonitoring results. Science of the Total Environment, 166(1), 89–135.

    Article  CAS  Google Scholar 

  • Christensen, J. M., Poulsen, O. M., & Thomsen, M. (1993). A short-term cross-over study on oral administration of soluble and insoluble cobalt compounds: sex differences in biological levels. International Archives of Occupational and Environmental Health, 65(4), 233–240.

    Article  CAS  Google Scholar 

  • Deeming, S. B., & Weber, C. W. (1978). Hair analysis of trace minerals in human subjects as influenced by age, sex, and contraceptive drugs. The American Journal of Clinical Nutrition, 31(7), 1175–1180.

    CAS  Google Scholar 

  • Esteban, M., & Castaño, A. (2009). Non-invasive matrices in human biomonitoring: a review. Environment International, 35(2), 438–449.

    Article  CAS  Google Scholar 

  • Fairweather-Tait, S. J., Bao, Y., Broadley, M. R., Collings, R., Ford, D., Hesketh, J. E., & Hurst, R. (2011). Selenium in human health and disease. Antioxidants & Redox Signaling, 14(7), 1337–1383.

    Article  CAS  Google Scholar 

  • Finley, J. W., Johnson, P. E., & Johnson, L. K. (1994). Sex affects manganese absorption and retention by humans from a diet adequate in manganese. The American Journal of Clinical Nutrition, 60(6), 949–955.

    CAS  Google Scholar 

  • Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26(4), 235–244.

    Article  CAS  Google Scholar 

  • Goldhaber, S. B. (2003). Trace element risk assessment: essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38(2), 232–242.

    Article  CAS  Google Scholar 

  • Gordon, G. F. (1985). Sex and age related differences in trace element concentrations in hair. Science of the Total Environment, 42(1), 133–147.

    Article  CAS  Google Scholar 

  • Goullé, J. P., Mahieu, L., Castermant, J., Neveu, N., Bonneau, L., Lainé, G., & Lacroix, C. (2005). Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: reference values. Forensic Science International, 153(1), 39–44.

    Article  Google Scholar 

  • Hoet, P., Jacquerye, C., Deumer, G., Lison, D., & Haufroid, V. (2013). Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium. Clinical Chemistry and Laboratory Medicine, 51(4), 839–849.

    Article  CAS  Google Scholar 

  • Kosanovic, M., & Jokanovic, M. (2011). Quantitative analysis of toxic and essential elements in human hair. Clinical validity of results. Environmental monitoring and assessment, 174(1–4), 635–643.

    Article  CAS  Google Scholar 

  • Meng, Z. (1998). Age-and sex-related differences in zinc and lead levels in human hair. Biological Trace Element Research, 61(1), 79–87.

    Article  CAS  Google Scholar 

  • Mertz, W. (1981). The essential trace elements. Science, 213(4514), 1332–1338.

    Article  CAS  Google Scholar 

  • Mikulewicz, M., Chojnacka, K., Gedrange, T., & Górecki, H. (2013). Reference values of elements in human hair: a systematic review. Environmental Toxicology and Pharmacology, 36(3), 1077–1086.

    Article  CAS  Google Scholar 

  • Morton, J., Carolan, V. A., & Gardiner, P. H. (2002). Removal of exogenously bound elements from human hair by various washing procedures and determination by inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 455(1), 23–34.

    Article  CAS  Google Scholar 

  • Mukherjee, B., Patra, B., Mahapatra, S., Banerjee, P., Tiwari, A., & Chatterjee, M. (2004). Vanadium—an element of atypical biological significance. Toxicology Letters, 150(2), 135–143.

    Article  CAS  Google Scholar 

  • Pan, D., & Huang, H. (2013). Hair selenium levels in hepatic steatosis patients. Biological Trace Element Research, 152(3), 305–309.

    Article  CAS  Google Scholar 

  • Perrone, L., Moro, R., Caroli, M., Di Toro, R., & Gialanella, G. (1996). Trace elements in hair of healthy children sampled by age and sex. Biological Trace Element Research, 51(1), 71–76.

    Article  CAS  Google Scholar 

  • Pick, D., Leiterer, M., & Einax, J. W. (2010). Reduction of polyatomic interferences in biological material using dynamic reaction cell ICP-MS. Microchemical Journal, 95(2), 315–319.

    Article  CAS  Google Scholar 

  • Poulsen, O. M., Holst, E., & Christensen, J. M. (1997). Calculation and application of coverage intervals for biological reference values (technical report). Pure and Applied Chemistry, 69(7), 1601–1612.

    CAS  Google Scholar 

  • Skalny, A. V., Skalnaya, M. G., Tinkov, A. A., Serebryansky, E. P., Demidov, V. A., Lobanova, Y. N., Grabeklis, A. R., Berezkina, E. S., Gryazeva, I. V., Skalny, A. A., & Nikonorov, A. A. (2015). Reference values of hair toxic trace elements content in occupationally non-exposed Russian population. Environmental Toxicology and Pharmacology, 40(1), 18–21.

    Article  CAS  Google Scholar 

  • Razagui, I. B. A., & Ghribi, I. (2005). Maternal and neonatal scalp hair concentrations of zinc, copper, cadmium, and lead. Biological Trace Element Research, 106(1), 1–27.

    Article  CAS  Google Scholar 

  • Rodushkin, I., & Axelsson, M. D. (2000). Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails Part II. A study of the inhabitants of northern Sweden. Science of the Total Environment, 262(1), 21–36.

    Article  CAS  Google Scholar 

  • Soininen, L., Mussalo-Rauhamaa, H., & Lehto, J. (2003). Hair chromium concentration of northern Finns. International Journal of Circumpolar Health, 62(3), 276–283.

    Article  CAS  Google Scholar 

  • Štupar, J., Vrtovec, M., & Dolinšek, F. (2007). Longitudinal hair chromium profiles of elderly subjects with normal glucose tolerance and type 2 diabetes mellitus. Metabolism, 56(1), 94–104.

    Article  Google Scholar 

  • Tamburo, E., Dongarrà, G., Varrica, D., & D’Andrea, D. (2011). Trace elements in hair of urban schoolboys: a diagnostic tool in environmental risk assessment. Geophysical Research Abstracts, 13, 1157.

    Google Scholar 

  • Tuormaa, T. E. (2000). Chromium, selenium and copper and other trace minerals in health and reproduction. Journal of Orthomolecular Medicine, 15(3), 145–156.

    Google Scholar 

  • Underwood, E. J. (1977). Trace elements in human and animal nutrition (4th ed.). New York: Academic.

    Google Scholar 

  • Valko, M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.

    Article  CAS  Google Scholar 

  • Wolfsperger, M., Hauser, G., Göβler, W., & Schlagenhaufen, C. (1994). Heavy metals in human hair samples from Austria and Italy: influence of sex and smoking habits. Science of the Total Environment, 156(3), 235–242.

    Article  CAS  Google Scholar 

  • Zaitseva, I. P., Skalny, A. A., Tinkov, A. A., Berezkina, E. S., Grabeklis, A. R., & Skalny, A. V. (2015). The influence of physical activity on hair toxic and essential trace element content in male and female students. Biological Trace Element Research, 163, 58–66.

    Article  CAS  Google Scholar 

  • Zhao, L. J., Ren, T., & Zhong, R. G. (2012). Determination of lead in human hair by high resolution continuum source graphite furnace atomic absorption spectrometry with microwave digestion and solid sampling. Analytical Letters, 45(16), 2467–2481.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The current research is supported by the Russian Ministry of Education and Science within project No. 2014/258-544.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skalny, A.V., Skalnaya, M.G., Tinkov, A.A. et al. Hair concentration of essential trace elements in adult non-exposed Russian population. Environ Monit Assess 187, 677 (2015). https://doi.org/10.1007/s10661-015-4903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4903-x

Keywords

Navigation