Skip to main content
Log in

Preparation of malathion MIP-SPE and its application in environmental analysis

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Malathion is an organophosphorous insecticide for controlling insects on fruits and vegetables, miscellaneous household insects, and animal parasites. It is important to develop highly efficient and selective pre-treatment method for analyzing malathion residues in environment and samples from agricultural products based on the molecularly imprinted polymers (MIPs). In this study, we developed a tailor-made MIP method with highly specific recognization to the template. The MIPs were prepared using malathion as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, azodiisobutyronitrile (AIBN) as an initiator, and the acetonitrile-chloroform (1:1, v/v) as a porogen. The molecular recognization mechanism of malathion and MAA was evaluated by molecular simulation, ultraviolet spectrometry (UV), and 1H-nuclear magnetic resonance (1H-NMR). MAA interacted specifically with malathion by hydrogen bond with a ratio of 2:1. The MIPs exhibit a high affinity, recognition specificity, and efficient adsorption performance for malathion. The Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), surface area and porosimeter analyzer, thermogravimetric/differential thermal analyzer (TG/DTA) were used to characterize the properties of MIP. The malathion residues in soil, tap water, and cabbage were cleaned up by MIP-SPE, detected quantitatively using GC-FPD, and confirmed by GC-MS/MS. The limits of tap water, soil, and cabbage were confined to 0.001 mg L−1, 0.004 and 0.004 mg kg−1, respectively. The spiked recoveries of malathion were 96.06–111.49 % (with RSD being 5.7–9.2 %), 98.13–103.83 % (RSD, 3.5–8.7 %), and 84.94–93.69 % (RSD, 4.7–5.8 %) for tap water, soil, and cabbage samples, respectively. Thus, the method developed here can be used effectively in assessing malathion residues in multiple environmental samples. The aim of the study was to provide an efficient, selective, and accurate method for analyzing malathion at trace levels in multiple media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alizadeh, T., Ganjalib, M. R., Nourozib, P., & Zareb, M. (2009). Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples. Analytica Chimica Acta, 638, 154–161.

    Article  CAS  Google Scholar 

  • Ambrosini, S., Serra, M., Shinde, S., Sellergren, B., & Lorenzi, E. D. (2011). Synthesis and chromatographic evaluation of molecularly imprinted polymers prepared by the substructure approach for the class-selective recognition of glucuronides. Journal of Chromatography A, 1218, 6961–6969.

    Article  CAS  Google Scholar 

  • Cheng, W. J., Liu, Z. J., & Wang, Y. (2013). Preparation and application of surface molecularly imprinted silica gel for selective extraction of melamine from milk samples. Talanta, 116, 396–402.

    Article  CAS  Google Scholar 

  • Cheng, W. J., Ma, H. T., Zhang, L., & Wang, Y. (2014). Hierarchically imprinted mesoporous silica polymer: an efficient solid-phase extractant for bisphenol A. Talanta, 120, 255–261.

    Article  CAS  Google Scholar 

  • Chowdhury. M. A. Z., Fakhruddin, A. N. M., Islam, M. N., Moniruzzaman, M., Gan, S. H., & Alam, M. K. (2013). Detection of the residues of nineteen pesticides in fresh vegetable samples using gas chromatography–mass spectrometry. Food Control, 34, 457–465.

  • Djozan, D., & Ebrahimi, B. (2008). Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Analytica Chimica Acta, 616, 152–159.

    Article  CAS  Google Scholar 

  • Donato, L., Tasselli, F., Luca, G. D., Blanco, S. G. D., & Drioli, E. (2013). Novel hybrid molecularly imprinted membranes for targeted 4,4-methylendianiline. Separation and Purification Technology, 116, 184–191.

    Article  CAS  Google Scholar 

  • Garcia, R., Cabrita, M. J., & Freitas, A. M. C. (2011). Application of molecularly imprinted polymers for the analysis of pesticide residues in food-a highly selective and innovative approach. American Journal of Analytical Chemistry, 2, 16–25.

    Article  Google Scholar 

  • Gokmen, M. T., & Prez, F. E. D. (2012). Porous polymer particles-a comprehensive guide to synthesis, characterization, functionalization and applications. Progress in Polymer Science, 37, 365–405.

    Article  CAS  Google Scholar 

  • Kjeldsen, L. S., Ghisari, M., & Bonefeld-Jørgensen, E. C. (2013). Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicology and Applied Pharmacology, 272, 453–464.

    Article  CAS  Google Scholar 

  • Laldinsangi, C., Vijayaprasadarao, K., Rajakumar, A., Murugananthkumar, R., Prathibha, Y., Sudhakumari, C. C., Mamta, S. K., Dutta-Gupta, A., & Senthilkumaran, B. (2014). Two-dimensional proteomic analysis of gonads of air-breathing catfish, Clarias batrachus after the exposure of endosulfan and malathion. Environmental Toxicology and Pharmacology, 37, 1006–1014.

    Article  CAS  Google Scholar 

  • Li, S. J., Cao, S. S., Whitcombe, M. J., & Piletsky, S. A. (2014). Size matters: challenges in imprinting macromolecules. Progress in Polymer Science, 39, 145–163.

    Article  CAS  Google Scholar 

  • Liu, L. K., Cao, Y., Ma, P. F., Qiu, C. X., Xu, W. Z., Liu, H., & Huang, W. H. (2014). Rational design and preparation of magnetic imprinted polymers for removal of indole by molecular simulation and improved atom transfer radical polymerization. RSC Advances, 4, 605–616.

    Article  CAS  Google Scholar 

  • Lofty, H. M., Abd El-Aleem, A. E. A., & Monir, H. H. (2013). Determination of insecticides malathion and lambda-cyhalothrin residues in zucchini by gas chromatography. Bulletin of Faculty of Pharmacy, Cairo University, 51, 255–260.

    Article  Google Scholar 

  • Matsui, J., Fujiwara, K., Ugata, S., & Takeuchi, T. (2000). Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. Journal of Chromatography A, 889, 25–31.

    Article  CAS  Google Scholar 

  • Nakazawa, H., Takahashi, N., Inoue, K., Ito, Y., Goto, T., Kato, K., Yoshimura, Y., & Oka, H. (2004). Rapid and simultaneous analysis of dichlorvos, malathion, carbaryl, and 2,4-dichlorophenoxy acetic acid in citrus fruit by flow-injection ion spray ionization tandem mass spectrometry. Talanta, 64, 899–905.

    Article  CAS  Google Scholar 

  • Nieto-García, A. J., Romero-Gonzalez, R., & Frenich, A. G. (2015). Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry. Food Control, 47, 369–380.

    Article  Google Scholar 

  • Pandey, G. P., Singh, A. K., Deshmukh, L., Prasad, S., Paliwal, L. J., Asthana, A., & Mathew, S. B. (2014). A novel and sensitive kinetic method for the determination of malathion using chromogenic reagent. Microchemical Journal, 113, 83–89.

    Article  CAS  Google Scholar 

  • Pang, G. F., Cao, Y. Z., Zhang, J. J., Fan, C. L., Liu, Y. M., Li, X. M., Jia, G. Q., Li, Z. Y., Shi, Y. Q., Wu, Y. P., & Guo, T. T. (2006). Validation study on 660 pesticide residues in animal tissues by gel permeation chromatography cleanup/gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1125, 1–30.

    Article  CAS  Google Scholar 

  • Qu, J. R., Zhang, J. J., Gao, Y. F., & Yang, H. (2012). Synthesis and utilization of molecular imprinting polymer for clean-up of propachlor in food and environmental media. Food Chemistry, 135, 1148–1156.

    Article  CAS  Google Scholar 

  • Raghu, P., Reddy, T. M., Reddaiah, K., Swamy, B. E. K., & Sreedhar, M. (2014). Acetylcholinesterase based biosensor for monitoring of malathion and acephate in food samples: a voltammetric study. Food Chemistry, 142, 188–196.

    Article  CAS  Google Scholar 

  • Sanagi, M. M., Salleh, S., Ibrahim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., Hussain, I., & Aboul-Enein, H. Y. (2013). Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. Journal of Food Composition and Analysis, 32, 155–161.

    Article  CAS  Google Scholar 

  • Sanchez-Brunete, C., Albero, B., Martin, G., & Tadeo, J. L. (2005). Determination of pesticide residues by GC-MS using analyte protectants to counteract the matrix effect. Analytical Sciences, 21, 1291–1296.

    Article  CAS  Google Scholar 

  • Shaikh, H., Memon, N., Bhanger, M. I., Nizamani, S. M., & Denizli, A. (2014). Core-shell molecularly imprinted polymer-based solid-phase microextraction fiber for ultra trace analysis of endosulfan I and II in real aqueous matrix through gas chromatography-micro electron capture detector. Journal of Chromatography A, 1337, 179–187.

    Article  CAS  Google Scholar 

  • Shen, Z. L., Yang, J., Zhu, X. L., Gao, Y., & Su, Q. D. (2009). Spectroscopy study of binding mechanisms and molecular recognition of methamidophos-specific moleculary imprinted polymer. Spectroscopy and Spectral Analysis, 29, 78–81.

    CAS  Google Scholar 

  • Singh, K., Pasha, A., & Rani, B. E. A. (2013). Preparation of molecularly imprinted polymers for heptachlor: an organochlorine pesticides. Chronicles of Young Scientists, 4, 46–50.

    Article  CAS  Google Scholar 

  • Sobhanzadeh, E., Bakar, N. K. A., Abas, M. R. B., & Nematia, K. (2011). Low temperature followed by matrix solid-phase dispersion-sonication procedure for the determination of multiclass pesticides in palm oil using LC-TOF-MS. Journal of Hazardous Materials, 186, 1308–1313.

    Article  CAS  Google Scholar 

  • Tokonami, S., Shiigi, H., & Nagaoka, T. (2009). Review: micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Analytica Chimica Acta, 641, 7–13.

    Article  CAS  Google Scholar 

  • Tsiropoulos, N. G., Bakeas, E. B., Raptis, V., & Batistatou, S. S. (2006). Evaluation of solid sorbents for the determination of fenhexamid, metalaxyl-M, pyrimethanil, malathion and myclobutanil residues in air samples: application to monitoring malathion and fenhexamid dissipation in greenhouse air using C-18 or Supelpak-2 for sampling. Analytica Chimica Acta, 573–574, 209–215.

    Article  Google Scholar 

  • Wang, Y. L., Gao, Y. L., Wang, P. P., Shang, H., Pan, S. Y., & Li, X. J. (2013). Sol–gel molecularly imprinted polymer for selective solid phase microextraction of organophosphorous pesticides. Talanta, 115, 920–927.

    Article  CAS  Google Scholar 

  • Wulff, G. (2002). Enzyme-like catalysis by molecularly imprinted polymers. Chemical Reviews, 102, 1–28.

    Article  CAS  Google Scholar 

  • Yonar, S. M., Ural, M. S., Silici, S., & Yonar, M. E. (2014). Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio carpio: protective role of propolis. Ecotoxicology and Environmental Safety, 102, 202–209.

    Article  Google Scholar 

  • Zhang, Y. Y., Xiao, Z. Y., Chen, F., Ge, Y. Q., Wu, J. H., & Hu, X. S. (2010). Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrasonics Sonochemistry, 17, 72–77.

    Article  CAS  Google Scholar 

  • Zhang, W. C., Zhang, H. T., Zhang, Q., Cui, Y. F., Wu, Z. Y., Zheng, R. J., & Liu, L. (2011). Molecularly imprinted polymers prepared by precipitation polymerization and used for inducing crystallization of oleanolic acid in supercritical CO2. Separation and Purification Technology, 81, 411–417.

    Article  CAS  Google Scholar 

  • Zhang, A. P., Lai, W. F., Sun, J. Q., Hu, G. X., & Liu, W. P. (2013). Probing the chiral separation mechanism and the absolute configuration of malathion, malaoxon and isomalathion enantiomers by chiral high performance liquid chromatography coupled with chiral detector–binding energy computations. Journal of Chromatography A, 1281, 26–31.

    Article  CAS  Google Scholar 

  • Zhang, J., Niu, Y. H., Li, S. J., Luo, R. Q., & Wang, C. Y. (2014). A molecularly imprinted electrochemical sensor based on sol–gel technology and multiwalled carbon nanotubes–nafion functional layer for determination of 2-nonylphenol in environmental samples. Sensors and Actuators B: Chemical, 193, 844–850.

    Article  CAS  Google Scholar 

  • Zhu, X. L., Yang, J., Su, Q. D., Cai, J. B., & Gao, Y. (2005). Selective solid-phase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples. Journal of Chromatography A, 1092, 161–169.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the project of Jiangsu Key Laboratory of Pesticide Science (NYXKT201207) and Natural Science Foundation of Jiangxi Province (20142BAB213028) for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, H.G., Zhu, J.X., Zhan, C.R. et al. Preparation of malathion MIP-SPE and its application in environmental analysis. Environ Monit Assess 187, 394 (2015). https://doi.org/10.1007/s10661-015-4641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4641-0

Keywords

Navigation