Skip to main content

Advertisement

Log in

Effects of saltwater intrusion on pinewood vegetation using satellite ASTER data: the case study of Ravenna (Italy)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The San Vitale pinewood (Ravenna, Italy) is part of the remaining wooded areas within the southeastern Po Valley. Several studies demonstrated a widespread saltwater intrusion in the phreatic aquifer caused by natural and human factors in this area as the whole complex coastal system. Groundwater salinization affects soils and vegetation, which takes up water from the shallow aquifer. Changes in groundwater salinity induce variations of the leaf properties and vegetation cover, recognizable by satellite sensors as a response to different spectral bands. A procedure to identify stressed areas from satellite remote sensing data, reducing the expensive and time-consuming ground monitoring campaign, was developed. Multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, acquired between May 2005 and August 2005, were used to calculate Normalized Difference Vegetation Index (NDVI). Within the same vegetation type (thermophilic deciduous forest), the areas with the higher vegetation index were taken as reference to identify the most stressed areas using a statistical approach. To confirm the findings, a comparison was conducted using contemporary groundwater salinity data. The results were coherent in the areas with highest and lowest average NDVI values. Instead, to better understand the behavior of the intermediate areas, other parameters influencing vegetation (meteorological data, water table depth, and tree density) were added for the interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguilar, C., Zinnert, J. C., Polo, M. R., & Young, D. R. (2012). NDVI as an indicator for changes in water availability to woody vegetation. Ecological Indicators, 23, 290–300.

    Article  Google Scholar 

  • Akkala, A., Devabhaktuni, V., & Kumar, A. (2010). Interpolation techniques and associated software for environmental data. Environmental Progress & Sustainable Energy, 29(2), 134–141.

    Article  CAS  Google Scholar 

  • Alaoui-Sosse, B., Sehmer, L., Barnola, P., & Dizengremel, P. (1998). Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., a rhythmically growing species. Trees, 12(7), 424–430.

  • Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., Inaba, M., & Murata, N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123(3), 1047–1056.

    Article  CAS  Google Scholar 

  • Amorosi, A., Colalongo, M. L., Pasini, G., & Preti, D. (1999). Sedimentary response to Late Quaternary sea-level changes in the Romagna coastal plain (northern Italy). Sedimentology, 46(1), 99–121.

    Article  Google Scholar 

  • Antolini, G., Marletto, V., Tomei, F., Pavan, V., & Tomozeiu, R. (2008). Atlante Idroclimatico Dell’Emilia‐Romagna 1961–2008. http://www.arpa.emr.it/sim/?clima, Accessed 27 July 2014.

  • Antonellini, M., & Mollema, P. (2010). Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy. Ecological Engineering, 236(9), 1201–1211.

    Article  Google Scholar 

  • Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234–253.

    Article  Google Scholar 

  • Barton, C. W. M. (2012). Advances in remote sensing of plant stress. Plant and Soil, 354, 41–44.

    Article  CAS  Google Scholar 

  • Buscaroli, A., & Zannoni, D. (2010). Influence of ground water on soil salinity in the San Vitale Pinewood (Ravenna-Italy). Agrochimica, 54(5), 303–320.

    CAS  Google Scholar 

  • Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., et al. (2013). Sea Level Change. In Stocker, T. F., Qin, D., Plattner, G. -K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1137–1216). Cambridge: Cambridge University Press.

  • Davenport, M. L., & Nicholson, S. E. (1993). On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in East Africa. International Journal of Remote Sensing, 14, 2369–2389.

    Article  Google Scholar 

  • DeLaune, R. D., Pezeshki, S. R., & Patrick, W. A., Jr. (1987). Response of coastal plants to increase in submergence and salinity. Journal of Coastal Research, 3(4), 535–546.

    Google Scholar 

  • Diani, L., & Ferrari, C. (2007). La vegetazione della Pineta di San Vitale e il pattern spaziale di Pinus Pinea. In: Monitoraggio e salvaguardia della Pineta di San Vitale e Classe. Rapporti Tecnici, Comune di Ravenna 2007.

  • Eidenshink, J. C. (1992). The 1990 conterminous U.S. AVHRR data set. Phogrammetric Engineering and Remote Sensing, 58(6), 809–8013.

    Google Scholar 

  • FLAASH Module. (2009). Atmospheric correction module: QUAC and FLAASH user’s guide, ENVI Version 5.0. Boulder: ITT Visual Information Solutions.

    Google Scholar 

  • Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. (2001). Mapping the biomass of Bornean tropical rain forest from remote sensed data. Global Ecology and Biogeography, 10, 379–387.

    Article  Google Scholar 

  • Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Peñuelas, J., & Valentini, R. (1995). Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5, 28–41.

    Article  Google Scholar 

  • Giambastiani, B. M. S., Antonellini, M., OudeEssink, G. H. P., & Stuurman, R. J. (2007). Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. Journal of Hydrology, 340, 94–104.

    Article  Google Scholar 

  • Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104.

    Article  Google Scholar 

  • Goto, K., Goto, T., Nmor, J. C., Minematsu, K., & Gotoh, K. (2015). Evaluating salinity damage to crops through satellite data analysis: application to typhoon affected areas of southern Japan. Natural Hazards, 75(3), 2815–2828.

    Article  Google Scholar 

  • Greggio, N., Antonellini, M., & Mollema, P. (2012). Irrigation management in coastal zones to prevent soil and groundwater salinization. In V. Abrol & P. Sharma (Eds.), Resource management for sustainable agriculture (pp. 21–48). Rijeka: Intech.

    Google Scholar 

  • Griffith, B., Douglas, D. C., Walsh, N. E., Young, D. D., McCabe, T. R., Russell, D. E., & Whitten, K. R. (2002). Section 3: the porcupine caribou herd. US Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR-2002-0001, 8–37.

  • Gutierrez-Rodriguez, M., Escalante-Estrada, J. A., & Rodriguez-Gonzalez, M. T. (2005). Canopy reflectance, stomatal conductance, and yield of Phaseolus vulgaris L. and Phaseolus coccinues L. under saline field conditions. International Journal of Agriculture and Biology, 7(3), 491–494.

    Google Scholar 

  • Hernández, E. I., Melendez-Pastor, I., Navarro-Pedreño, J., & Gómez, I. (2014). Spectral indices for the detection of salinity effects in melon plants. Scientia Agricola, 71(4), 324–330.

    Article  Google Scholar 

  • Holm, A. L., Cridland, S. W., & Roderick, C. K. (2003). The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sensing of Environment, 85, 145–158.

    Article  Google Scholar 

  • Kerr, J. T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 18, 299–305.

    Article  Google Scholar 

  • Kotuby-Amacher, J., Koenig, R., & Kitchen, B. (1997). Salinity and plant tolerance. Utah State University, USA. http://forestry.usu.edu/files/uploads/AGSO03.pdf. Accessed 02 February 2014

  • Laghi, M., Mollema, P., & Antonellini, M. (2010). The influence of river bottom topography on saltwater encroachment along the Lamone River (Ravenna, Italy), and implications for the salinization of the adjacent coastal aquifer. World environmental and water resources congress 2010: 1124 Challenges of change. 2010 ASCE, pp 1124–1135.

  • Lazzari, G., Merloni, N., & Saiani, D. (2009). Flora, Riserve Naturali dello Stato nell’area costiera di Ravenna Parco Delta del Po - Emilia Romagna. Parco Delta del Po. Quaderni dell’Ibis, n.3. Ravenna: Tipografia Moderna.

    Google Scholar 

  • Le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89, 1–28.

    Article  Google Scholar 

  • Liu, B. X., Wang, Z. G., Liang, H. Y., & Yang, M. S. (2012). Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats. The Journal of Applied Ecology, 23(6), 1481.

  • Maas, E. V. (1984). Salt tolerance of plants. In Handbook of plant science in agriculture (pp. 57–75). Boca Raton: CRC Press.

    Google Scholar 

  • Marconi, V., Antonellini, M., Balugani, E., & Dinelli, E. (2011). Hydrogeochemical characterization of small coastal wetlands and forests in the Southern Po plain (Northern Italy). Ecohydrology, 4(4), 597–607.

    Article  CAS  Google Scholar 

  • Mata-González, R., McLendon, T., Martin, D. W., Trlica, M. J., & Pearce, R. A. (2012). Vegetation as affected by groundwater depth and microtopography in a shallow aquifer area of the Great Basin. Ecohydrology, 5(1), 54–63.

    Article  Google Scholar 

  • Metternicht, G. I., & Zinck, J. A. (2003). Remote sensing of soil salinity: potentials and constraints. Remote Sensing of Environment, 85, 1–20.

    Article  Google Scholar 

  • Mirck, J., & Volk, T. A. (2010). Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts. Bioresource Technology, 101(10), 3484–3492.

    Article  CAS  Google Scholar 

  • Mollema, P. N., Antonellini, M., Dinelli, E., Gabbianelli, G., Greggio, N., & Stuyfzand, P. J. (2013). Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments. Applied Geochemistry, 34, 207–211.

    Article  CAS  Google Scholar 

  • Myneni, R. B., Forrest, G. H., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33, 481–486.

    Article  Google Scholar 

  • National Institute of Standards and Technology (NIST), (2003). NIST/SEMATECH e-handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/. Accessed 28 May 2013.

  • Naumann, J. C., Young, D. R., & Anderson, J. E. (2009). Spatial variations in salinity stress across a coastal landscape using vegetation indices derived from hyperspectral imagery. Plant Ecology, 202(2), 285–297.

    Article  Google Scholar 

  • Padula, M. (1968). Ricerche sulle condizioni ecologiche dei boschi di S. Vitale e di Classe (Ravenna). Annali dell’Accademia Italiana delle Scienze Forestali, 17, 173–244.

    Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324–349.

    Article  CAS  Google Scholar 

  • Peñuelas, J. (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3, 151–156.

    Article  Google Scholar 

  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20, 503–510.

    Article  Google Scholar 

  • Piccoli, F., Gerdol, R., & Ferrari, C. (1991). Vegetation map of S. Vitale pinewood (Northern Adriatic coast, Italy). Phytocoenosis, 3, 337–342.

    Google Scholar 

  • Pirola, A. (1974). La vegetazione della Pineta di San Vitale. Influenza di insediamenti industriali sul circostante ambiente naturale. Studio sulla Pineta di San Vitale di Ravenna (pp 76–88). Bologna: Ed. Compositori.

    Google Scholar 

  • Reed, B. C., Brown, J. F., Vander Zee, D., Loveland, T. R., Merchant, J. W., & Ohlen, D. O. (1994). Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703–714.

    Article  Google Scholar 

  • Regione Emilia Romagna - Servizio Cartografico e Geologico (1999). Carta della Vegetazione del Parco Regionale del Delta del Po - Stazione “Pineta di San Vitale e Pialasse di Ravenna”. http://geoportale.regione.emilia-romagna.it. Accessed 16 April 2013.

  • Rodgers, J. C., III, Murrah, A. W., & Cooke, W. H. (2009). The impact of Hurricane Katrina on the coastal vegetation of the Weeks Bay Reserve, Alabama from NDVI data. Estuaries and Coasts, 32(3), 496–507.

    Article  Google Scholar 

  • Sehmer, L., Alaoui-Sosse, B., & Dizengremel, P. (1995). Effect of salt stress on growth and on the detoxifying pathway of pedunculate oak seedlings (Quercus robur L.). Journal of Plant Physiology, 147(1), 144–151.

    Article  CAS  Google Scholar 

  • Steyer, G. D. (2008). Landscape analysis of vegetation change in coastal Louisiana following hurricanes Katrina and Rita (Doctoral dissertation, University of Southwestern Louisiana).

  • Teobaldelli, M., Gandolfo, G. P., Mencuccini, M., Piussi, P., & Cherubini, P. (2005). Analysis of the effects of water salinity and coastal erosion on function and growth of pine forests in the Maremma Regional Park. Medcore Project International Conference, Florence, Italy, 10–14 November 2005. Abstract Volume: 85.

  • Tilley, D. R., Ahmed, M., Son, J. H., & Badrinarayanan, H. (2007). Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh. Journal of Environmental Quality, 36, 780–789.

    Article  CAS  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306–314.

    Article  Google Scholar 

  • UNESCO (1983). Algorithms for computation of fundamental properties of seawater. UNESCO technical papers in marine science 44, UNESCO/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51.

  • Vourlitis, G. L., Verfaillie, J., Oechel, W. C., Hope, A., Stow, D., & Engstrom, R. (2003). Spatial variation in regional CO2 exchange for the Kuparuk River Basin, Alaska over the summer growing season. Global Change Biology, 9, 930–941.

    Article  Google Scholar 

  • Wang, J., Rich, P. M., & Price, K. P. (2003). Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24, 2345–2364.

    Article  Google Scholar 

  • Weier, J., & Herring, D. (1999). Measuring vegetation (NDVI & RVI).<http://Earthobservatory.nasa.gov>. Accessed 11 February 2009.

  • Wiegand, C. L., Rhoades, J. D., Escobar, D. E., & Everitt, J. H. (1994). Photographic and videographic observations for determining and mapping the response of cotton to soil-salinity. Remote Sensing of Environment, 49, 212–223.

    Article  Google Scholar 

  • Wilkie, D. S., & Finn, J. T. (1996). Remote sensing imagery for natural resources monitoring: a guide for first-time users. New York: Columbia University Press.

    Google Scholar 

  • Yuan, J., & Niu, Z. (2008). Evaluation of atmospheric correction using FLAASH. In: International workshop on earth observation and remote sensing applications, pp. 1–6.

  • Zhang, T., Zeng, S. L., Gao, Y., Ouyang, Z. T., Li, B., Fang, C. M., & Zhao, B. (2011). Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecological Indicators, 11, 1552–1562.

    Article  Google Scholar 

  • Zinnert, J. C., Nelson, J. D., & Hoffman, A. M. (2012). Effects of salinity on physiological responses and the photochemical reflectance index in two co-occurring coastal shrubs. Plant and Soil, 354, 45–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Land Processes Distributed Active Archive Center (LP DAAC), located at the US Geological Survey’s EROS Data Center, for the ASTER data availability.

We would like to acknowledge the very helpful comments of two anonymous reviewers that greatly improved the quality of the manuscript.

Special thanks to Prof. Giovanni Gabbianelli for the constant supervision to the work and for the fundamental discussions during the writing of the paper.

Lastly, this research would not have been possible without the field data collected by Beatrice Giambastiani (CIRSA) during her PhD project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Greggio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbarella, M., De Giglio, M. & Greggio, N. Effects of saltwater intrusion on pinewood vegetation using satellite ASTER data: the case study of Ravenna (Italy). Environ Monit Assess 187, 166 (2015). https://doi.org/10.1007/s10661-015-4375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4375-z

Keywords

Navigation