Skip to main content
Log in

The dynamics of toxic and nontoxic Microcystis during bloom in the large shallow lake, Lake Taihu, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lake Taihu is a large shallow freshwater lake (surface area 2,338 km2, mean depth 1.9 m) in China, which has experienced toxic cyanobacterial bloom dominated by Microcystis annually during the last few decades. In the present study, the dynamics of toxic and nontoxic Microcystis in three sampling stations (Meiliang Bay (site N2), Gonghu Bay (site N4), and the lake center area (site S4)) were quantified using quantitative real-time PCR (qPCR) during bloom periods from April to September, 2010. Our data showed that the abundance of toxic Microcystis and the toxic proportion gradually increased from April to August in water samples and reached the peak in August. During the study period, toxic Microcystis genotypes comprised between 26.2 and 64.3, between 4.4 and 22.1, and between 10.4 and 20.6 % of the total Microcystis populations in the three sampling sites, respectively. Correlation analysis suggested that there was a strong positive relationship between total Microcystis, toxic Microcystis and the toxic proportion. Chlorophyll a, total phosphorus, and water temperature were positively correlated with the abundances of total Microcystis and toxic Microcystis. Furthermore, the toxic proportion was positively correlated with total phosphorus (P < 0.05) and water temperature (P < 0.01), showing that global warming together with eutrophication could promote more frequent toxic blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Amé, M. V., Díaz, M. P., & Wunderlin, D. A. (2003). Occurrence of toxic cyanobacterial blooms in San Roque Reservoir (Córdoba, Argentina): a field and chemometric study. Environmental Toxicology, 18(3), 192–201.

    Article  Google Scholar 

  • Carmichael, W. W. (1994). The toxins of cyanobacteria. Scientific American, 270(1), 78–86.

    Article  CAS  Google Scholar 

  • Chorus, I., & Bartam, J. (1999). Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management. London: E and FN Spon.

    Book  Google Scholar 

  • Davis, T. W., Berry, D. L., Boyer, G. L., & Gobler, C. J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8(5), 715–725.

    Article  CAS  Google Scholar 

  • Duan, H. T., Ma, R. H., Xu, X. F., Kong, F. X., Zhang, S. X., Kong, W. J., et al. (2009). Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environmental Science and Technology, 43(10), 3522–3528.

    Article  CAS  Google Scholar 

  • Fleming, L. E., Rivero, C., Burns, J., Williams, C., Bean, J. A., Shea, K. A., et al. (2002). Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae, 1(2), 157–168.

    Article  CAS  Google Scholar 

  • Fortin, N., Aranda-Rodriguez, R., Hongmei, J., Pick, F., Bird, D., & Greer, C. W. (2010). Detection of microcystin-producing cyanobacteria in Missisquoi Bay, Quebec, Canada, using quantitative PCR. Applied and Environmental Microbiology, 76(15), 5105–5112.

    Article  CAS  Google Scholar 

  • Frangeul, L., Quillardet, P., Castets, A.-M., Humbert, J.-F., Matthijs, H. C. P., Cortez, D., et al. (2008). Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics, 9, 274–294.

    Article  Google Scholar 

  • Furukawa, K., Noda, N., Tsuneda, S., Saito, T., Itayama, T., & Inamori, Y. (2006). Highly sensitive real-time PCR assay for quantification of toxic cyanobacteria based on microcystin synthetase A gene. Journal of Bioscience and Bioengineering, 102(2), 90–96.

    Article  CAS  Google Scholar 

  • Ito, E., Kondo, F., Terao, K., & Harada, K. (1997). Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon, 35(9), 1453–1457.

    Article  CAS  Google Scholar 

  • Joung, S.-H., Oh, H.-M., Ko, S.-R., & Ahn, C.-Y. (2011). Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful Algae, 10(2), 188–193.

    Article  Google Scholar 

  • Kaebernick, M., Neilan, B. A., Börner, T., & Dittmann, E. (2000). Light and the transcriptional response of the microcystin biosynthesis gene cluster. Applied and Environmental Microbiology, 66(8), 3387–3392.

    Article  CAS  Google Scholar 

  • Kardinaal, W. E. A., Tonk, L., Janse, I., Hol, S., Slot, P., Huisman, J., et al. (2007a). Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Applied and Environmental Microbiology, 73(9), 2939–2946.

    Article  Google Scholar 

  • Kardinaal, W. E. A., Janse, I., Kamst-van Agterveld, M., Meima, M., Snoek, J., Mur, L. R., et al. (2007b). Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquatic Microbial Ecology, 48(1), 1–12.

    Article  Google Scholar 

  • Kong, F. X., Ma, R. H., Gao, J. F., & Wu, X. D. (2009). The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. Journal of Lake Science, 21(3), 314–328.

    CAS  Google Scholar 

  • Kurmayer, R., & Kutzenberger, T. (2003). Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Applied and Environmental Microbiology, 69(11), 6723–6730.

    Article  CAS  Google Scholar 

  • Lee, S. J., Jang, M. H., Kim, H. S., Yoon, B. D., & Oh, H. M. (2000). Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage. Journal of Applied Microbiogy, 89(2), 323–329.

    Article  CAS  Google Scholar 

  • Li, D. M., Kong, F. X., Yu, Y., Zhang, M., & Shi, X. L. (2011). The abundance of microcystin-producing and non-microcystin-producing Microcystis populations in the water column and sediment during a water bloom in Lake Taihu. Acta Scientiae Circumstantiae, 31(2), 292–298.

    CAS  Google Scholar 

  • Li, D. M., Kong, F. X., Shi, X. L., Ye, L. L., Yu, Y., & Yang, Z. (2012). Quantification of microcystin-producing and non-microcystin producing Microcystis populations during the 2009 and 2010 blooms in Lake Taihu using quantitative real-time PCR. Journal of Environmental Science, 24(2), 284–290.

    Article  Google Scholar 

  • Mackintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., & Codd, G. A. (1990). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters, 264(2), 187–192.

    Article  CAS  Google Scholar 

  • Marahiel, M. A. (1992). Multidomain enzymes involved in peptide synthesis. FEBS Letters, 307(1), 40–43.

    Article  CAS  Google Scholar 

  • Nishizawa, T., Asayama, M., Fujii, K., Harada, K.-I., & Shirai, M. (1999). Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. The Journal of Biochemistry, 126(3), 520–529.

    Article  CAS  Google Scholar 

  • Nishizawa, T., Ueda, A., Asayama, M., Fujii, K., Harada, K.-I., Ochi, K., et al. (2000). Polyketide synthetase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic hepatopeptide microcystin. The Journal of Biochemistry, 127(5), 779–789.

    Article  CAS  Google Scholar 

  • Orr, P. T., & Jones, G. J. (1998). Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnology and Oceanography, 43(7), 1604–1614.

    Article  CAS  Google Scholar 

  • Paerl, H. W., Fulton, R. S., Moisander, P. H., & Dyble, J. (2001). Harmful freshwater algal blooms with an emphasis on cyanobacteria. The Scientic World Journal, 1, 76–113.

    Article  CAS  Google Scholar 

  • Rapala, J., Sivonen, K., Luukkanien, R., & Niemelä, S. (1993). Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena strains - a laboratory study. Journal of Applied Phycology, 5(6), 581–591.

    Article  CAS  Google Scholar 

  • Rinta-Kanto, J. M., Ouellette, A. J., Boyer, G. L., Twiss, M. R., Bridgeman, T. B., & Wilhelm, S. W. (2005). Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in western Lake Erie using quantitative real-time PCR. Environmental Science &Technology, 39(11), 4198–4205.

    Article  CAS  Google Scholar 

  • Rinta-Kanto, J. M., Konopko, E. A., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2009). Lake Erie Microcystis: Relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae, 8(5), 665–673.

    Article  CAS  Google Scholar 

  • Schatz, D., Keren, Y., Hadas, O., Carmeli, S., Sukenik, A., & Kaplan, A. (2005). Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environmental Microbiology, 7(6), 798–805.

    Google Scholar 

  • Shen, P. P., Shi, Q., Hua, Z. C., Kong, F. X., Wang, Z. G., Zhuang, S. X., et al. (2003). Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. Environment International, 29(5), 641–647.

    Article  CAS  Google Scholar 

  • Sivonen, K. (1990). Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 56(9), 2658–2666.

    CAS  Google Scholar 

  • Song, L., Sano, T., Li, R., Watanabe, M. H., Liu, Y., & Kaya, K. (1998). Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions. Phycological Research, 46(Supplement s2), 19–23.

    Article  CAS  Google Scholar 

  • Song, L., Chen, W., Peng, L., Wan, N., Gan, N., & Zhang, X. (2007). Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Research, 41(13), 2853–2864.

    Article  CAS  Google Scholar 

  • Te, S. H., & Gin, K. Y.-H. (2011). The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae, 10(3), 319–329.

    Article  CAS  Google Scholar 

  • Tillett, D., Dittmann, E., Erhard, M., Von Döhren, H., Böner, T., & Neilan, B. A. (2000). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide: polyketide synthetase system. Chemistry & Biology, 7(10), 753–764.

    Article  CAS  Google Scholar 

  • Utkilen, H., & Gjølme, N. (1992). Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Applied and Environmental Microbiology, 58(4), 1321–1325.

    CAS  Google Scholar 

  • Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L., et al. (2003). Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Applied and Environmental Microbiology, 69(11), 7289–7297.

    Article  CAS  Google Scholar 

  • Van der Westhuizen, A. J., & Eloff, J. N. (1983). Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green alga Microcystis aeruginosa. Zeitschrift für Pflanzenphysiologie, 110(2), 157–163.

    Article  Google Scholar 

  • Van der Westhuizen, A. J., & Eloff, J. N. (1985). Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta, 163(1), 55–59.

    Article  Google Scholar 

  • Vézie, C., Brient, L., Sivonen, K., Bertru, G., Lefeuvre, J.-C., & Salkinoja- Salonen, M. (1998). Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microbial Ecology, 35(2), 126–135.

    Article  Google Scholar 

  • Vézie, C., Rapla, J., Vaitomaa, J., Seitsonen, J., & Sivonen, K. (2002). Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentration. Microbial Ecology, 43(4), 443–454.

    Article  Google Scholar 

  • Watanabe, M. F., & Oishi, S. (1985). Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology, 49(5), 1342–1344.

    CAS  Google Scholar 

  • Wiedner, C., Visser, P. M., Fastner, J., Codd, G. A., Mur, L. R., & Metcalf, J. (2003). Effects of light on the microcystin content of Microcystis Strain PCC 7806. Applied and Environmental Microbiology, 69(3), 1475–1481.

    Article  CAS  Google Scholar 

  • Ye, W. J., Liu, X. L., Tan, J., Li, D. T., & Yang, H. (2009). Diversity and dynamics of microcystin-producing cyanobacteria in China’s third largest lake, Lake Taihu. Harmful Algae, 8(5), 637–644.

    Article  CAS  Google Scholar 

  • Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N., & Hiroishi, S. (2007). Dynamics of microcystin- producing and non-microcystin-producing Microcystis populations is correlated with nitrate concentration in a Japanese lake. FEMS Microbiology Letters, 266(1), 49–53.

    Article  CAS  Google Scholar 

  • Zhu, G. W. (2008). Eutrophic status and causing factors for a large, shallow and subtrophical Lake Taihu Lake, China. Journal of Lake Sciences, 20(1), 21–26.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the project of Jiangsu Province Science Foundation (BK2012488), and National Basic Research Program of China (“973” Program, 2008CB418000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Yu, Y., Yang, Z. et al. The dynamics of toxic and nontoxic Microcystis during bloom in the large shallow lake, Lake Taihu, China. Environ Monit Assess 186, 3053–3062 (2014). https://doi.org/10.1007/s10661-013-3600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3600-x

Keywords

Navigation