Skip to main content
Log in

Water quality characterization in the Northern Florida everglades based on three different monitoring networks

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Loxahatchee National Wildlife Refuge (Refuge) is affected by inflows containing elevated contaminant concentrations originating from agricultural and urban areas. Water quality was determined using three networks: the Northern Refuge (NRN), the Southern Refuge (SRN), and the Consent Decree (CDN) monitoring networks. Within these networks, the Refuge was divided into four zones: (1) the canal zone surrounding the marsh, (2) the perimeter zone (0 to 2.5 km into the marsh), (3) the transition zone (2.5 to 4.5 km into the marsh), and (4) the interior zone (>4.5 km into the marsh). In the NRN, alkalinity (ALK) and conductivity (SpC) and dissolved organic carbon, total organic carbon, total dissolved solids (TDS), Ca, Cl, Si, and SO4 concentrations were greater in the perimeter zone than in the transition or interior zone. ALK, SpC, and SO4 concentrations were greater in the transition than in the interior zone. ALK, SpC, and TDS values, Ca, SO4, and Cl had negative curvilinear relationships with distance from the canal toward the Refuge interior (r 2 = 0.78, 0.67, 0.61, 0.77, 0.62, and 0.57, respectively). ALK, TB and SpC, and Ca and SO4 concentrations decreased in the canal and perimeter zones from 2005 to 2009. Important water quality assessments using the SRN and CDN cannot be made due to the sparseness and location of sampling sites in these networks. The number and placement monitoring sites in the Refuge requires optimization based on flow pattern, distance from contaminant source, and water volume to determine the effect of canal water intrusion on water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA. (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, American Water Works Association, and Water Environment Federation.

    Google Scholar 

  • Bruland, G. L., Grunwald, S., Osborne, T. Z., Reddy, K. R., & Newman, S. (2006). Spatial distribution of soil properties in water conservation area 3 of the Everglades. Soil Science Society of America Journal, 70(5), 1662–1676.

    Article  CAS  Google Scholar 

  • Bruland, G. L., Osborne, T. Z., Reddy, K. R., Grunwald, S., Newman, S., & DeBusk, W. F. (2007). Recent changes in soil total phosphorus in the Everglades: water conservation area 3. Environmental Monitoring and Assessment, 129(1), 379–395.

    Article  CAS  Google Scholar 

  • Chang, C. Y., McCormick, P. V., Newman, S., & Elliott, E. M. (2009). Isotopic indicators of environmental change in a subtropical wetland. Ecological Indicators, 9(5), 825–836.

    Article  CAS  Google Scholar 

  • Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., & Scinto, L. J. (2003). Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality, 32(1), 344–362.

    CAS  Google Scholar 

  • Davis, S. E., Corronado-Molina, C., Childers, D. L., & Day, J. W. (2003). Temporarily dependant C, N, and P dynamics associated with the decay of Rhizophora mangle L. Leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany, 75(1), 199–215.

    Article  CAS  Google Scholar 

  • DeBusk, W. F., Reddy, K. R., Koch, M. S., & Wang, Y. (1994). Spatial distribution of nutrients in a northern Everglades marsh: Water Conservation Area 2A. Soil Science Society of America Journal, 58(2), 543–552.

    Article  Google Scholar 

  • DeBusk, W. F., Newman, S., & Reddy, K. R. (2001). Spatio–temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A. Journal of Environmental Quality, 30(4), 1438–1446.

    Article  CAS  Google Scholar 

  • Dorazio, R. M., & Johnson, F. A. (2003). Bayesian inference and decision theory—a framework for decision making in natural resource management. Ecological Applications, 13(2), 556–563.

    Article  Google Scholar 

  • Doren, R. F., Armentano, T. V., Whiteaker, L. D., & Jones, R. D. (1997). Marsh vegetation patterns and soil phosphorus gradients in the Everglades ecosystem. Aquatic Botany, 56(1), 145–163.

    Article  CAS  Google Scholar 

  • Entry, J. A. (2012). Water Quality Characterization in the Northern Florida Everglades. Water Soil and Air Pollution, (online first).

  • Gaiser, E. (2009). Periphyton as an early indicator of restoration in the Florida Everglades. Ecological Indicators, 6, S37–S45.

    Article  Google Scholar 

  • Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandaran, K., Childers, D. L., Trexler, J. C., et al. (2004). Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment an oligotrophic wetland. Water Research, 38(3), 507–516.

    Article  CAS  Google Scholar 

  • Gaiser, E. E., Childers, D. L., Jones, R. D., Richards, J. H., Scinto, L. J., & Trexler, J. C. (2006). Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography, 50(1), 342–355.

    Google Scholar 

  • Germain, G., & Pietro, K. (2011). Chapter 5: performance and optimization of the everglades stormwater treatment areas. In: 2011 South Florida Environmental Report. 115 pp. Available at: http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2011_sfer/v1/vol1_table_of_contents.html.

  • Hagerthey, S. E., Newman, S., Ruthey, K., Smith, E. P., & Godin, J. (2008). Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecological Monographs, 78(4), 547–565.

    Article  Google Scholar 

  • Harwell, M. C., Surratt, D. D., Barone, D. M., & Aumen, N. G. (2008). Spatial characterization of water quality in the northern Everglades—examining water quality impacts from agricultural and urban runoff. Environmental Monitoring and Assessment., 147(2), 445–462.

    Article  CAS  Google Scholar 

  • Ivanoff, D., & Chen, H. (2012). Chapter 5: performance and optimization of the everglades stormwater treatment areas. In: 2012 South Florida Environmental Report. 53 pp. Available at: http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2012_sfer_draft/chapters/v1_ch5.pdf.

  • King, R. S., Richardson, C. J., Urban, D. L., & Romanowicz, E. A. (2004). Spatial dependency of vegetation–environment linkages in an anthropogenically influenced ecosystem. Ecosystems, 7(1), 75–97.

    Article  CAS  Google Scholar 

  • Kirk, R. E. (1995). Experimental design: procedures for the behavioral sciences (2nd ed.). Belmont, CA: Brooks Cole Publishing Co. 884 pp.

    Google Scholar 

  • Liston, S. E., & Trexler, J. C. (2005). Spatial and temporal scaling of macroinvertebrate communities inhabiting floating periphyton mats in the Florida Everglades. Journal of the North American Benthological Society, 24(3), 832–844.

    Article  Google Scholar 

  • Lorenzen, B., Brix, H., McKee, K. L., Mendelson, I. A., & Miao, S. L. (2000). Seed germination of two Everglades species: Cladium jamaicense and Typha domingensis. Aquatic Botany, 66(1), 169–180.

    Article  Google Scholar 

  • Ludwig, D., Hilborn, R., & Walters, C. (1993). Uncertainty, resource exploitation, and conservation: lessons from history. Science, 260(1), 17–36.

    Article  CAS  Google Scholar 

  • McCormick, P. V., Newman, S., & Vilchek, L. W. (2009). Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia, 621(1), 105–114.

    Article  CAS  Google Scholar 

  • Miao, S. L., Newman, S., & Sklar, F. H. (2000). Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquatic Botany, 68(1), 297–311.

    Article  Google Scholar 

  • Miao, S. L., McCormick, P. V., Newman, S., & Rajagopalan, S. (2001). Interactive effects of seed availability, water depth, and phosphorus enrichment on cattail colonization in an Everglades wetland. Wetlands Ecology and Management, 9(1), 39–47.

    Article  Google Scholar 

  • Miller, R. L., & McPherson, B. F. (2008). Water quality in the Arthur R. Marshall Loxahatchee National Wildlife Refuge—trends and spatial characteristics of selected constituents, 1974–2004. USGS Scientific Investigations Report 2007–5277. USGS Reston, VA. Available from: http//www.usgs.gov.

  • Ning, S. K., & Chang, N. B. (2002). Multi-objective, decision-based assessment of a water quality monitoring network in a river system. Journal of Environmental Monitoring, 4(1), 121–126.

    Article  CAS  Google Scholar 

  • Noe, G. B., Childers, D. L., & Jones, R. D. (2001). Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique. Ecosystems, 4, 603–624.

    Article  CAS  Google Scholar 

  • Noe, G. B., Scinto, L. J., Taylor, J., Childers, D., & Jones, R. D. (2003). Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshwater Biology, 48(11), 1993–2008.

    Article  CAS  Google Scholar 

  • Park, S., Choi, J. H., Wang, S., & Wang, S. S. (2006). Design of a water quality monitoring network in a large river system using genetic algorithm. Ecological Modelin, 199(1), 289–297.

    Article  Google Scholar 

  • Rutchey, K., Schall, T., & Sklar, F. (2008). Development of vegetation maps for assessing Everglades restoration progress. Wetlands, 28, 806–816.

    Article  Google Scholar 

  • SAS Institute Inc. (2003). SAS User’s Guide: Statistics—Version 9.1 Statistical Analysis System (SAS) Institute Inc., Cary, NC. 584 pp.

  • Scheidt, D. J., & Kalla, P. I. (2007). Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat: monitoring for adaptive management: a R-EMAP status report. USEPA Region 4, Athens, GA. EPA-904-R-07-001. 98 pp.

  • SFWMD (2006). Monitoring plan for Everglades Protection Area—Water Conservation Area 1 (WCA1) Project: EVPA. Version: 10 July, 2006. 22 pp. Available at: http://www.sfwmd/gov/org/ema/toc/archives/2006_08_29/evpa/wca1/monitoring_plan.pdf. South Florida Water Management District, West Palm Beach, FL.

  • SFWMD (2010). Quality Assessment Report for Water Quality Monitoring, April–June 2010. South Florida Water Management District Environmental Report. Available at: http://www.sfwmd.gov/portal/page/portal/xweb%20about%20us/toc. South Florida Water Management District, West Palm Beach, FL.

  • Snedecor, W. G., & Cochran, W. G. (1994). Statistical methods. Ames, Iowa: Iowa State University Press. 354 p.

    Google Scholar 

  • Stewart, H., Miao, S. L., Colbert, M., & Carraher, C. E., Jr. (1997). Seed germination of two cattail (Typha) species as a function of Everglades nutrient levels. Wetlands, 17(1), 116–122.

    Article  Google Scholar 

  • Strobl, R. O., & Robillard, P. D. (2008). Network design for water quality monitoring of surface freshwaters: a review. Journal of Environmental Management, 87(7), 639–648.

    Article  Google Scholar 

  • Strobl, R. O., Robillard, P. D., Shannon, R. D., Day, R. L., & McDonnell, A. J. (2006a). Water quality monitoring network design methodology for the selection of critical sampling points: Part I. Environmental Monitoring and Assessment, 112(1), 137–158.

    Article  CAS  Google Scholar 

  • Strobl, R. O., Robillard, P. D., Shannon, R. D., Day, R. L., & McDonnell, A. J. (2006b). Water quality monitoring network design methodology for the selection of critical sampling points: Part II. Environmental Monitoring and Assessment, 122(1), 319–334.

    Article  CAS  Google Scholar 

  • Surratt, D., Waldon, M. G., Harwell, M. C., & Aumen, N. G. (2008). Temporal and spatial trends of canal water intrusion into a northern Everglades marsh in Florida, USA. Wetlands, 28(1), 173–186.

    Article  Google Scholar 

  • USFWS (2000). Arthur R. Marshall Loxahatchee National Wildlife Refuge Comprehensive Conservation Plan. US Fish and Wildlife Service, Boynton Beach, FL. Available at: http://.loxhatchee.fws.gov.

  • USFWS (2007a). Arthur R. Marshall Loxahatchee National Wildlife Refuge—Enhanced Monitoring and Modeling Program Annual Report. LOX06-008, U.S. Fish and Wildlife Service, Boynton Beach, FL. 183 pp. Available at: http://sofia.usgs.gov/lox_monitor_model/reports/.

  • USFWS (2007b). Arthur R. Marshall Loxahatchee National Wildlife Refuge—Enhanced Monitoring and Modeling Program Annual Report. LOX07-005. U.S. Fish and Wildlife Service, Boynton Beach, FL. 183 pp. Available at: http://sofia.usgs.gov/lox_monitor_model/reports/.

  • USGS. (2005). Digital elevation map of the Loxahatchee National Wildlife Refuge. United States Geological Services, FL, USA. http://sofia.usgs.gov/exchange/desmond/desmondelev.html.

  • Wang, H., Waldon, M. G., Meselhe, E., Arceneaux, J., Chen, C., & Harwell, M. C. (2009). Surface water sulfate dynamics in the Northern Florida Everglades, USA. Journal of Environmental Quality, 38(2), 734–741.

    Article  CAS  Google Scholar 

  • Williams, B. K. (1996). Adaptive optimization and the harvest of biological populations. Mathematical Biosciences, 136(1), 1–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Rebekah Gibble, Grant Gifford, Angie Markovich, Serena Rinker, Robert Smith and Tiffany Trent for water quality sampling and collection; the SFWMD and Columbia Analytical Services for water chemistry analyses; SFWMD for access to their DBHYDRO for database; Leslie MacGregor for GIS assistance and April Ostrem for data QA/QC analyses. Funding provided by the US Congress P.L. 108–108 and the Department of Interior Appropriations Act of 2004. The opinions expresses herein do not necessarily reflect those of the Department of Interior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Entry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entry, J.A. Water quality characterization in the Northern Florida everglades based on three different monitoring networks. Environ Monit Assess 185, 1985–2000 (2013). https://doi.org/10.1007/s10661-012-2682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2682-1

Keywords

Navigation