Skip to main content
Log in

Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study investigated the effects of heavy metals (Ni, Zn, Cd, Cu, and Pb) toxicity on the performance of 18 MLD activated sludge process-based sewage treatment plant (STP) during celebration of Holi (festival of colors in India). The composite sampling (n = 32) was carried out during the entire study period. The findings show a significant decrease in chemical oxygen demand removal efficiency (20%) of activated sludge system, after receiving the heavy metals laden wastewater. A significant reduction of 40% and 60% were observed in MLVSS/MLSS ratio and specific oxygen uptake rate, which eventually led to a substantial decrease in biomass growth yield (from 0.54 to 0.17). The toxic effect of metals ions was also observed on protozoan population. Out of the 12 mixed liquor species recorded, only two ciliates species of Vorticella and Epistylis exhibited the greater tolerance against heavy metals toxicity. Furthermore, activated sludge shows the highest metal adsorption affinity for Cu, followed by Zn, Pb, Ni, and Cd (Cu > Zn > Pb > Ni > Cd). Finally, this study proves the robustness of activated sludge system against the sudden increase in heavy metal toxicity since it recovered the earlier good quality performance within 5 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham, J. V., Butler, R. D., & Sigee, D. C. (1997). Ciliate populations and metals in an activated-sludge plant. Water Research, 31, 1103–1111.

    Article  CAS  Google Scholar 

  • APHA, AWWA, & WEF. (2005). Standards Methods for the Examination of Water and Wastewater (20th ed., pp. 20005–22605). Washington: American Public Health Association, American Water Works Association and Water Environmental Federation.

    Google Scholar 

  • Arican, B., & Yetis, U. (2003). Nickel sorption by acclimatized activated sludge culture. Water Research, 37, 3508–3516.

    Article  CAS  Google Scholar 

  • Battistoni, P., Fava, G., & Ruello, M. L. (1993). Heavy metal shock load in activated sludge uptake and toxic effects. Water Research, 27, 821–827.

    Article  CAS  Google Scholar 

  • Benmoussa, H., Martin, G., Richard, Y., & Leprince, A. (1986). Etude de l'inhibition de la nitrification par les cations de metaux lourdes. Water Research, 20, 1333–1339.

    Article  CAS  Google Scholar 

  • Brown, M. J., & Lester, J. N. (1982). Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—I: Effects of metal concentration. Water Research, 16, 1539–1548.

    Article  CAS  Google Scholar 

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45, 198–207.

    Article  CAS  Google Scholar 

  • Cheng, M. H., Patterson, J. W., & Minear, R. A. (1975). Heavy metals uptake by activated sludge. Journal of the Water Pollution Control Federation, 47, 362–376.

    CAS  Google Scholar 

  • Chipasa, K. B. (2003). Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management, 23, 135–143.

    Article  CAS  Google Scholar 

  • Chua, H., Yu, P. H. F., Sin, S. N., & Cheung, M. W. L. (1999). Sub-lethal effects of heavy metals on activated sludge microorganisms. Chemosphere, 39, 2681–2692.

    Article  CAS  Google Scholar 

  • Comte, S., Guibaud, G., & Baudu, M. (2008). Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. Journal of Hazardous Materials, 151, 185–193.

    Article  CAS  Google Scholar 

  • Esmond, S. E., & Petrasek, A. C. (1974). Trace metal removal. Industrial Water Engineering, 11, 14–17.

    CAS  Google Scholar 

  • Gerardi, M. H. (2006). Wastewater bacteria. Hoboken: Wiley.

    Book  Google Scholar 

  • Huang, J. Y. C., & Cheng, M. D. (1984). Measurement and new applications of oxygen uptake rates in activated sludge processes. Journal of the Water Pollution Control Federation, 56, 259–265.

    CAS  Google Scholar 

  • Hughes, M. N., & Poole, R. K. (1989). Metals and microorganisms. London: Chapman and Hall.

    Google Scholar 

  • Kelly, C. J., Tumsaroj, N., & Lajoie, C. A. (2004). Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system. Water Research, 38, 423–431.

    Article  CAS  Google Scholar 

  • Lawrence, J. R., Chenier, M. R., Roy, R., Beaumier, D., Fortin, N., Swernone, G. D. W., Neu, T. R., & Greer, C. W. (2004). Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Applied and Environmental Microbiology, 70, 4326–4339.

    Article  CAS  Google Scholar 

  • Madoni, P., Davoli, D., & Gorbi, G. (1994). Acute toxicity of lead, chromium, and other heavy metals to ciliates from activated sludge plants. Bulletin of Environmental Contamination and Toxicology, 53, 420–425.

    Article  CAS  Google Scholar 

  • Madoni, P., Davoli, D., Gorbi, G., & Vescovi, L. (1996). Toxic effect of heavy metals on the activated sludge protozoan community. Water Research, 30, 135–141.

    Article  CAS  Google Scholar 

  • Madoni, P., Davoli, D., & Guglielmi, L. (1999). Response of SOUR and AUR to heavy metal contamination in activated sludge. Water Research, 33, 2459–2464.

    Article  CAS  Google Scholar 

  • Malej, J. (1986). Alternating wastewater aeration with activated sludge at Koszlin wastewater treatment plant. Gaz, Woda i Technika Sanitarna, 4, 86.

    Google Scholar 

  • Metcalf and Eddy. (2003). Wastewater engineering treatment, disposal and reuse. New Delhi: McGraw-Hill.

    Google Scholar 

  • Neufeld, R. D., Greenfield J. H. (1981). Technical Progress Report to AISI. Project No. 78–395.

  • Ong, S., Toorisaka, E., Hirata, M., & Hano, T. (2004). Effects of nickel (II) addition on the activity of activated sludge microorganisms and activated sludge process. Journal of Hazardous Materials, B113, 111–121.

    Article  Google Scholar 

  • Ozbelge, T. A., Ozbelge, H. O., & Altinten, P. (2007). Effect of acclimatization of microorganisms to heavy metals on the performance of activated sludge process. Journal of Hazardous Materials, 142, 332–339.

    Article  Google Scholar 

  • Palm, J., & Jenkins, D. (1980). Relationship between organic loading, dissolved oxygen concentration and sludge settleability in the completely mixed activated sludge process. Journal of the Water Pollution Control Federation, 10, 2484.

    Google Scholar 

  • Principi, F., Villa, F., Bernasconi, M., & Zanardini, E. (2006). Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Research, 40, 99–106.

    Article  CAS  Google Scholar 

  • Stasinakis, A. S., Thomaidis, N. S., Mamais, D., Papanikolaou, E. C., Tsakon, A., & Lekkas, T. D. (2003). Effects of chromium (IV) addition on activated sludge process. Water Research, 37, 2140–2148.

    Article  CAS  Google Scholar 

  • Sterritt, R. M., & Lester, J. N. (1986). Heavy metals immobilization by bacterial extracellular polymers. In Immobilisation of ions by bio-sorption. Chichester: Ellis Horwood.

    Google Scholar 

  • Sterritt, R. M., Brown, M. J., & Lester, J. N. (1981). Metal removal by adsorption and precipitation in the activated sludge process. Environmental Pollution Series A, 24, 313–323.

    Article  CAS  Google Scholar 

  • Ting, Y. P., Lawson, F., & Prince, I. G. (1989). Uptake of cadmium and zinc by the alga Chlorella vulgaris. Part 1: Individual ion species. Biotechnology and Bioengineering, 34, 990–999.

    Article  CAS  Google Scholar 

  • US EPA (2001). Specific oxygen uptake rate in bio-solids—Method 1683. EPA-821-R-01-014.

  • Velpandian, T., Saha, K., Ravi, A. K., Kumari, S. S., Biswas, N. R., & Ghose, S. (2007). Ocular hazards of the colors used during the festival of colors (Holi) in India—Malachite green toxicity. Journal of Hazardous Materials, A139, 204–208.

    Article  Google Scholar 

  • Vismara, R. (1982). Problema degli inibitori nei trattamenti biologici del liquami misti domestici e industriali. Ingegneria Ambientale, 11, 634–643.

    CAS  Google Scholar 

  • Volesky, B., & Holan, Z. S. (1995). Biosorption of heavy metals. Biotechnology Progress, 11, 235–250.

    Article  CAS  Google Scholar 

  • Wang, J., Huang, C. P., & Allen, H. E. (2003). Modeling heavy metal uptake by sludge particulates in the presence of dissolved organic matter. Water Research, 37, 4835–4842.

    Article  CAS  Google Scholar 

  • You, S. J., Tsai, Y. P., & Huang, R. Y. (2009). Effect of heavy metals on nitrification performance in different activated sludge processes. Journal Hazardous Materials, 165, 987–994.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, V.K., Bhatia, A., Gaur, R.Z. et al. Effects of multi-metal toxicity on the performance of sewage treatment system during the festival of colors (Holi) in India. Environ Monit Assess 184, 7517–7529 (2012). https://doi.org/10.1007/s10661-012-2516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2516-1

Keywords

Navigation