Skip to main content
Log in

Evaluation of hydrochemical changes due to intensive aquifer exploitation: case studies from Mexico

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The impact of intensive aquifer exploitation has been observed in numerous places around the world. Mexico is a representative example of this problem. In 2010, 101 out of the 653 aquifers recognized in the country, showed negative social, economic, and environmental effects related to intensive exploitation. The environmental effects include, among others, groundwater level decline, subsidence, attenuation, and drying up of springs, decreased river flow, and deterioration of water quality. This study aimed at determining the hydrochemical changes produced by intensive aquifer exploitation and highlighting water quality modifications, taking as example the Valle de Toluca, Salamanca, and San Luis Potosi aquifers in Mexico’s highlands. There, elements such as fluoride, arsenic, iron, and manganese have been detected, resulting from the introduction of older groundwater with longer residence times and distinctive chemical composition (regional flows). High concentrations of other elements such as chloride, sulfate, nitrate, and vanadium, as well as pathogens, all related to anthropogenic pollution sources (wastewater infiltration, irrigation return flow, and atmospheric pollutants, among others) were also observed. Some of these elements (nitrate, fluoride, arsenic, iron, and manganese) have shown concentrations above Mexican and World Health Organization drinking water standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA, AWWA, WEF. (1995). Standard methods for the examination water and wastewater (19th ed.). Washington, DC: APHA, AWWA & WEF.

    Google Scholar 

  • Birkle, P., Torres-Rodríguez, V., & González-Partida, E. (1998). The water balance for the Basin of the Valley of Mexico and implications for future water consumption. Hydrogeology Journal, 6, 500–517.

    Article  Google Scholar 

  • Calderhead, A. I., Therien, R., Rivera, A., Martel, R., & Garfias, J. (2011). Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Advances in Water Resources, 34, 83–97.

    Article  Google Scholar 

  • Cardona, A. (2007). Hydrochemistry of regional, intermediate and local flow systems as a result of the geological characteristic of the Mesa Central: Reactions, processes and pollution (Hidrogeoquímica de sistemas de flujo, regional, intermedio y local resultado del marco geológico en la Mesa Central: reacciones, procesos y contaminación). PhD Thesis. Universidad Nacional Autónoma de México. Mexico

  • Cardona, A., & Carrillo-Rivera, J. J. (2006). Hydrochemistry of intermediate flow systems associated with basin fill sediments derived from rhyolitic rocks (Hidrogeoquímica de sistemas de flujo intermedio que circulan por sedimentos continentales derivados de rocas riolíticas). Ingeniería Hidráulica en México, XXI(3), 69–86.

    Google Scholar 

  • Cardona, A., Carrillo-Rivera, J. J., Castro-Larragoitia, G. J., & Graniel-Castro, E. (2008). Combined use of indicators to evaluate waste water contamination to local flow systems in semi-arid regions: San Luis Potosi, Mexico. In Selected Papers Series of the International Association of Hydrogeologists (SPS-IAH) Groundwater flow: understanding from local to regional scales (pp. 85–104). Lisse: Balkema.

    Google Scholar 

  • Cardona, A., Castro-Larragoitia, J., Herrera-Zamarrón, G., López-Álvarez, B., Núnez-Hernández, E., & Escamilla-De La Rosa, E. (2009). Network design for monitoring the quality and hydraulic head in the deep aquifer of the Valley of San Luis Potosi (Diseño de redes de monitoreo de la calidad y carga hidráulica para el acuífero profundo del Valle de San Luis Potosí). FMSLP-2005-CO1-10. Technical report COPOCyT-Fondos Mixtos, San Luis Potosí.

  • Carrillo-Rivera, J. J., & Armienta, M. A. (1990). Differentiation of inorganic contamination of groundwater in the valley of San Luis Potosi, Mexico (Diferenciación de la contaminación inorgánica de las aguas subterráneas del valle de la ciudad de San Luis Potosí, México). Geofísica Internacional, 28(4), 763–783.

    Google Scholar 

  • Carrillo-Rivera, J. J., Cardona, A., & Moss, D. (1996). Importance of the vertical component of groundwater flow: a hydrogeochemical approach in the valley of San Luis Potosí, Mexico. Journal of Hydrology, 185, 23–44.

    Article  CAS  Google Scholar 

  • Carrillo-Rivera, J. J., Cardona, A., & Edmunds, W. (2002). Use of abstraction regime and knowledge of hydrogeological conditions to control high-fluoride concentration in abstracted groundwater: San Luis Potosi basin, Mexico. Journal of Hydrology, 261(1–4), 24–47.

    Article  CAS  Google Scholar 

  • Carrillo-Rivera, J. J., Cardona, A., Huizar-Álvarez, R., & Graniel-Castro, E. (2008). Response of the interaction between groundwater and other components of the environment in Mexico. Environmental Geology, 55(2), 303–319.

    Google Scholar 

  • CCRECRL. (1993). Atlas Ecológico de la Cuenca Hidrográfica del río Lerma. México: Gobierno del Estado de México.

    Google Scholar 

  • CNA (1995). Pollution problems of the industrial park. San Luis Potosí, S.L.P., Mexico. (Problemática de la contaminación en la zona industrial. San Luis Potosí, S.L.P., Mexico) Internal report. 30 pp.

  • CNA (1996). Groundwater contamination in the industral park, San Luis Potosí (Estudio hidrogeológico de la contaminación del agua subterránea en la zona industrial de San Luis Potosí). Contract GAS-013-96 to Geoingeniería Internacional. Internal report. 150 pp.

  • CNA (2009). Determining the availability of water in the Toluca Valley aquifer, Mexico State (Determinación de la disponibilidad de agua en el acuífero Valle de Toluca, Estado de México). México: Comisión Nacional del Agua. http://www.conagua.gob.mx/Conagua07/Aguasubterranea/pdf/DR_1501.pdf. Accessed 10 Dec 2009

  • CNA (2010). Statistics on water in Mexico (Estadísticas del Agua en México). Edicion 2010 Mexico: Comision Nacional del Agua. http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/EAM2010-16Junio2010.pdf. Accessed 15 February 2011.

  • COTAS-ASLP. (2006). Technical study of the social and geohydrological conditions of the 2411 San Luis Potosi aquifer (Estudio técnico de las condiciones geohidrológicas y sociales del acuífero 2411 San Luis Potosi). Internal Report. San Luis Potosí: COTAS-ASLP.

    Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology (3rd ed.). New York: Wiley.

    Google Scholar 

  • Esteller, M. V., & Andreu, J. M. (2005). Anthropic effects on hydrochemical characteristics of the Valle de Toluca aquifer (central Mexico). Hydrogeology Journal, 13, 378–390.

    Article  CAS  Google Scholar 

  • Esteller, M. V., & Díaz-Delgado, C. (2002). Environmental effects of aquifer overexploitation: a case study in the Highlands of Mexico. Environmental Management, 29(2), 266–278.

    Article  Google Scholar 

  • Fall, C., Hinojosa-Pena, A., & Carreño-de-Leon, M. C. (2007). Design of a monitoring network and assessment of the pollution on the Lerma river and its tributaries by wastewaters disposal. Science of the Total Environment, 373(1), 208–219.

    Article  CAS  Google Scholar 

  • Flores-Márquez, E., Jiménez-Suarez, G., Martínez-Serrano, R., Chávez, R., & Silva-Pérez, D. (2006). Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico. Hydrogeology Journal, 15, 1216–1230.

    Article  Google Scholar 

  • Golden Software, Inc. (1997). SURFER for Windows, version 6. Golden, Colorado: Golden Software, Inc.

    Google Scholar 

  • GUYSA (1998). Hydrogeological study and mathematical model of the valley of Irapuato-Valle de Santiago aquifer (Estudio hidrogeológico y modelo matemático del acuífero del valle de Irapuato-Valle de Santiago). Technical report CEAS-APA-GTO-97-023. Geofísica de Exploracion Guysa, CEASG, México.

  • Herrera, M. E., & Sánchez, J. L. (1994). Estratificación y Recursos Minerales del Estado de México. Memoria y mapas. México: Gobierno del Estado de México. Secretaria de Desarrollo Económico.

    Google Scholar 

  • INEGI. (1999). Salamanca. Cuaderno Estadístico Municipal. México: Instituto Nacional de Estadística y Geografía.

    Google Scholar 

  • INEGI (2005). II Conteo de Población y Vivienda. México: Instituto Nacional de Estadística y Geografía. http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2005/default.aspx. .Accessed 12 February 2008.

  • Kumar, M., Ramanathan, A. L., Rao, M. S., & Kumar, B. (2006). Identification and evaluation of hydrochemical processes in the groundwater environment of Delhi, India. Environemnetal Geology, 50, 1025–1039.

    CAS  Google Scholar 

  • La Vigna, F., Ciadamidaro, S., Mazza, R., & Mancini, L. (2010). Water quality and relationship between superficial and groundwater in Rome (Aniene River basin, central Italy). Environmental Earth Sciences, 60(6), 1267–1279.

    Article  Google Scholar 

  • Labarthe, H. G., Mata-Segura, J. L., & Torres, H. R. (2005). Fractures and faults of the land in the urban area of San Luis Potosi. (Grietas y fallas del terreno en la zona urbana de San Luis Potosi). Technical report. México: Instituto de Geología, Universidad Autónoma de San Luis Potosí.

    Google Scholar 

  • Landín-Rodríguez, L. E. (2006). Physicochemical parameters and concentrations of fluoride and arsenic in drinking-water wells in San Luis Potosí city and metropolitan area. Alternative treatment: adsorption of fluoride and arsenic in the activated Al2O3/water solution interface. (Parámetros fisicoquímicos y concentración de flúor y arsénico en el agua de los pozos de ciudad de San Luis Potosí y zona conurbada. Alternativa de tratamiento: adsorción de flúor y arsénico en la interfase Al2O3 activada/solución acuosa). Master’s Thesis, Universidad Autónoma de San Luis Potosí, Mexico.

  • Llamas, R., & Custodio, E. (2003). Intensive use of groundwater. Challenges and opportunities. Lisse: Balkema.

    Google Scholar 

  • López-Doncel, R., Mata-Segura, J. L., Cruz-Márquez, J., Arzate-Flores, J., & Pacheco-Martínez, J. (2006). Geological risk to the historical heritage. Examples of the historic center of the city of San Luis Potosi (Riesgo geológico para el patrimonio histórico. Ejemplos del centro histórico de la ciudad de San Luis Potosí). Boletín de la Sociedad Geológica Mexicana, LVIII(2), 259–263. http://boletinsgm.igeolcu.unam.mc/epoca04/5802(9)LopezDoncel.pdf . Accessed 8 January 2009.

  • Martínez Revilla, D., Cardona, A., López Álvarez, B., Núñez Hernández, E., & Martínez-Banda, F. (2006). Impact of land use on shallow groundwater quality in the basin of San Luis Potosi (Impacto del uso del suelo en la calidad del agua subterránea somera en la cuenca de San Luis Potosí). In Proc. Doceavo Verano de la Ciencia de la Universidad Autónoma de San Luis Potosí y Octavo de la Región Centro, San Luis Potosí.

  • Mata, E. (2006). Correlation between the emission of combustion gases into the atmosphere and the presence of vanadium in the groundwater in the City of Salamanca, Guanajuato (Correlación entre la emisión de gases de combustión a la atmósfera y la presencia de vanadio en el agua subterránea en la Cd. de Salamanca, Guanajuato). Master’s thesis, Universidad de Guanajuato. Mexico.

  • Mata-Segura, J. L., López-Doncel, R., Rodríguez-Ríos, R., Arzate-Flores, J. A., & Pacheco-Martínez, J. (2004). Problems of geological faults in the San Luis Potosi-Soledad de Graciano Sánchez metropolitan area. (Problemática de las fallas geológicas en la zona urbana y conurbana de San Luis Potosí-Soledad de Graciano Sánchez). In Proc. IV Reunión Nacional de Ciencias de la Tierra. Queretaro, Mexico.

  • Mejía, J. A. (2007). Factors affecting the vulnerability of the aquifer system of Salamanca, Guanajuato (Factores que afectan la vulnerabilidad del sistema acuífero de Salamanca, Guanajuato). PhD Thesis. Universidad Nacional Autónoma de México. Mexico.

  • Mejía, J. A., Rodríguez, R., & Berlín, J. (2001). Hydrodynamic and pollution of the urban aquifer system of Salamanca, Gto. The Salamanca case. In Proc. 1st Int. Workshop on Investigation, Management and Remediation of Contaminated Aquifers (pp. 335–346). Alicante, Spain.

  • Mejía, J. A., Rodríguez, R., Armienta, A., Mata, E., & Fiorucci, A. (2007). Aquifer vulnerability zoning, an indicator of atmospheric pollutants input? Vanadium in the Salamanca aquifer, Mexico. Water, Air, and Soil Pollution, 185(1–4), 95–100.

    Article  Google Scholar 

  • Re, V., Cissé-Faye, S., Faye, A., Faye, S., Gaye, C. B., Sacchi, E., et al. (2011). Water quality decline in coastal aquifers under anthropic pressure: the case of a suburban area of Dakar (Senegal). Environmental Monitoring and Assessment, 172, 605–622.

    Article  CAS  Google Scholar 

  • Rodríguez, A. (2002). Simulation of the dispersion of pollutants in the atmosphere from industrial point sources (Simulación de la dispersión de contaminantes en la atmósfera de fuentes puntuales de una industria). Master’s Thesis, Universidad de Guanajuato. Mexico.

  • Rodríguez, R., Mejía, J. A., Berlín, J, Armienta, A., & González, T. (2000). Study to determine the degree of groundwater quality deterioration by organic compounds in Salamanca, Guanajuato (Estudio para la determinación del grado de alteración de la calidad del agua subterránea por compuestos orgánicos en Salamanca, Guanajuato). Technical report. Mexico: CEASG-IGF-UNAM.

  • Rodríguez, R., Reyes, R., Rosales, J., Berlín, J., Mejía, J. A., & Ramos, A. (2001a). Structuring of thematic maps of groundwater vulnerability index of the urban area of Salamanca Guanajuato (Estructuración de mapas temáticos de índices de vulnerabilidad acuífera de la mancha urbana de Salamanca Gto). Technical report. CEASG-IGF-UNAM: México.

    Google Scholar 

  • Rodríguez, R., Armienta, A., Berlín, J., & Mejía, J. A. (2001b). Aquifer pollution risk assessment for a multi source process. The Salamanca Case. In Proc. 1st International. Workshop on Investigation, Management and Remediation of Contaminated Aquifers. (pp. 155–162) Alicante, Spain.

  • Rodríguez, R., Rodríguez, L., & Palma, F. (2002). Social Perception of polluted water consumption risk. An approximation between aquifer vulnerability assessment and water supply management in Salamanca, Mexico. In C. A. Brebbia (Ed.), Risk Analysis III (pp. 469–474). London: WIT.

    Google Scholar 

  • Rodríguez, R., Ramos, A., & Armienta, A. (2003). Groundwater arsenic variations: the role of local geology and rainfall. Applied Geochemistry, 19, 245–250.

    Article  Google Scholar 

  • Rodríguez, R., Armienta, A., & Mejía, J. A. (2005). Arsenic contamination of the Salamanca Aquifer System: a risk analysis. In J. Bundschub & P. Batthacharyan (Eds.), Natural Arsenic in Groundwater (pp. 77–84). Lisse: Balkema.

    Chapter  Google Scholar 

  • Rosales, J. (2003). Characterization of subsoil and aquifer vulnerability (AVI) in Salamanca, Guanajuato (Caracterización del subsuelo y vulnerabilidad acuífera (AVI) en Salamanca Gto). Master’s thesis, Mexico: ESIA-Instituto Politécnico Nacional.

  • Simmers, I., Villarroya, F., & Rebollo, L. F. (1992). Selected papers on aquifer overexploitation. Hannover: Heinz Heise.

    Google Scholar 

  • Singh, D. K., & Singh, A. K. (2002). Groundwater situation in India: problems and perspective. International Journal of Water Resources Development, 18(4), 563–580.

    Article  Google Scholar 

  • Stretta, E. J. P., & Del Arenal, R. (1960). Study on drinking water supply for the City of San Luis Potosi. (Estudio para el abastecimiento de agua potable para la Ciudad de San Luis Potosí). México: Applied Sciences Institute, Hydrology Section, UNESCO-IG-UNAM.

    Google Scholar 

  • Vrba, J. (2003). The impact of aquifer intensive use on groundwater quality. In R. Llamas & E. Custodio (Eds.), Intensive use of groundwater. Challenges and opportunities (pp. 113–132). Lisse: Balkema.

    Google Scholar 

Download references

Acknowledgments

The work on the Valle de Toluca aquifer was partially funded by Universidad Autonoma del Estado de Mexico (UAEM2600/2008U). The Salamanca study was partially financed by the UNAM-DGAPA grant PAPIIT IN107507. The work by A. Cardona conducted for this research was carried out with the financial support of DAAD and RWTH Aachen University, for the period of the academic visit to the Department of Engineering Geology and Hydrogeology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Esteller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteller, M.V., Rodríguez, R., Cardona, A. et al. Evaluation of hydrochemical changes due to intensive aquifer exploitation: case studies from Mexico. Environ Monit Assess 184, 5725–5741 (2012). https://doi.org/10.1007/s10661-011-2376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2376-0

Keywords

Navigation