Skip to main content
Log in

Novel next-group recommendation approach based on sequential market basket information

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

A market basket is a set of items included in a retail assortment that a customer buys on a shopping trip. The purpose of market basket analysis is to persuade a customer to spend more money through upselling or cross-selling. Most recommendation systems only suggest a single next-item or the top n items that a customer is most likely to buy. A company might succeed in convincing a customer to spend more money to increase sales revenue if a recommendation system can suggest the next or top n groups of items that customers are likely to buy according to the items in their basket. Based on the similarity upper approximation clustering, Borda majority count and PrefixSpan algorithm, this paper proposes a novel next-group recommendation approach according to sequential market basket information. Compared with the previous methods, the proposed approach can provide next-group instead of next-item recommendation, which may create more opportunities for customers to increase their spending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boztug, Y., & Reutterer, T. (2008). A combined approach for segment-specific market basket analysis. European Journal of Operational Research, 187, 294–312.

    Article  Google Scholar 

  2. Manchanda, P., Ansari, A., & Gupta, S. (1999). The ‘shopping basket’: A model for multi-category purchase incidence decisions. Marketing Science, 18, 95–114.

    Article  Google Scholar 

  3. Videla-Cavieres, I. F., & Ríos, S. A. (2014). Extending market basket analysis with graph mining techniques: A real case. Expert Systems with Applications, 41, 1928–1936.

    Article  Google Scholar 

  4. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th international conference on very large data bases (pp. 487–499).

  5. Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: A robust clustering algorithm for categorical attributes. Journal of Information Systems, 25(5), 345–366.

    Google Scholar 

  6. Yun, C. H., Chuang, K. T., & Chen, M. S. (2006). Adherence clustering: An efficient method for mining market-basket cluster. Information Systems, 31, 170–186.

    Article  Google Scholar 

  7. Agrawal, R., & Srikant, R. (1995). Mining sequential pattern. In Proceedings of the 11th international conference on data engineering. Taipei, Taiwan.

  8. Hu, Y. H., Wu, F., & Liao, Y. J. (2013). An efficient tree-based algorithm for mining sequential patterns with multiple minimum supports. The Journal of Systems and Software, 86, 1224–1238.

    Article  Google Scholar 

  9. Zhang, Z., Liu, Y., Ding, W., Huang, W., Su, Q., & Chen, P. (2015). Proposing a new friend recommendation method, FRUTAI, to enhance social media providers’ performance. Decision Support Systems, 79, 46–54.

    Article  Google Scholar 

  10. Ma, L. C., & Hsu, P. P. (2022). Prediction of web browsing behavior based on sequential data mining (under review).

  11. Wright, A. P., Wright, A. T., McCoy, A. B., & Sittig, D. F. (2014). The use of sequential pattern mining to predict next prescribed medications. Journal of Biomedical Informatics, 53, 73–80.

    Article  Google Scholar 

  12. SenKul, P., & Salin, S. (2012). Improving pattern quality in web usage mining by using semantic information. Knowledge and Information Systems, 30(3), 527–541.

    Article  Google Scholar 

  13. Burke, R. (2001). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12, 331–370.

    Article  Google Scholar 

  14. Desai, N. A., & Ganatra, A. (2015). Buying scenario and recommendation of purchase by constraint based sequential pattern mining from time stamp based sequential dataset. Procedia Computer Science, 45, 166–175.

    Article  Google Scholar 

  15. Ji, K., Sun, R., Shu, W., & Li, X. (2015). Next-song recommendation with temporal dynamics. Knowledge-Based Systems, 88, 134–143.

    Article  Google Scholar 

  16. Salehi, M., & Kamalabadi, I. N. (2013). Hybrid recommendation approach for learning material based on sequential pattern of the accessed material and the learner’s preference tree. Knowledge-Based Systems, 48, 57–69.

    Article  Google Scholar 

  17. Mishra, R., Kumar, P., & Bhasker, B. (2015). A web recommendation system considering sequential information. Decision Support Systems, 75, 1–10.

    Article  Google Scholar 

  18. Qiu, J., Lin, Z., & Li, Y. (2015). Predicting customer purchase behavior in the e-commerce context. Electronic Commerce Research, 15, 427–452.

    Article  Google Scholar 

  19. Jing, N., Jiang, T., & Du, J. (2018). Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website. Electronic Commerce Research, 18, 159–179.

    Article  Google Scholar 

  20. Deng, W. (2020). Leveraging consumer behaviors for product recommendation: An approach based on heterogeneous network. Electronic Commerce Research. https://doi.org/10.1007/s10660-020-09441-0

    Article  Google Scholar 

  21. Wu, X. Q., Zhang, L., Tian, S. L., & Wu, L. (2021). Scenario based e-commerce recommendation algorithm based on customer interest in Internet of things environment. Electronic Commerce Research, 21, 689–705.

    Article  Google Scholar 

  22. Ma, L. C. (2016). A new group ranking approach for ordinal preferences based on group maximum consensus sequences. European Journal of Operational Research, 251(1), 171–181.

    Article  Google Scholar 

  23. Ma, L. C. (2019). A new consensus mining approach to group ranking problems involving different intensities of preferences. Computers & Industrial Engineering, 131, 320–326.

    Article  Google Scholar 

  24. You, X., & Hou, F. (2022). A self-confidence and leadership based feedback mechanism for consensus of group decision making with probabilistic linguistic preference relation. Information Sciences, 582, 547–572.

    Article  Google Scholar 

  25. Chen, Y. L., & Hu, Y. H. (2006). Constraint-based sequential pattern mining: The consideration of recency and compactness. Decision Support Systems, 42, 1203–1215.

    Article  Google Scholar 

  26. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. C. (2001). PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of international conference on data engineering (pp. 215–224).

  27. Yen, S. J., & Lee, Y. S. (2006). An efficient data mining approach for discovering interesting knowledge from customer transactions. Expert Systems with Applications, 230, 650–657.

    Article  Google Scholar 

  28. Islam, M. A., Rafi, M. R., Azad, A. A., & Qvi, J. A. (2021). Weighted frequent sequential pattern mining. Applied Intelligence. https://doi.org/10.1007/s10489-021-02290-w

    Article  Google Scholar 

  29. Huynh, H. M., Nguyen, L. T. T., Vo, B., Oplatková, Z. K., Fournier-Viger, P., & Yun, U. (2022). An efficient parallel algorithm for mining weighted clickstream patterns. Information Sciences, 582, 349–368.

    Article  Google Scholar 

  30. Roy, K. K., Moon, M. H. H., Rahman, M. M., Ahmed, C. F., & Leung, C. K. S. (2022). Mining weighted sequential patterns in incremental uncertain databases. Information Sciences, 582, 865–896.

    Article  Google Scholar 

  31. Baek, Y., Yun, U., Lin, J. C. W., Yoon, E., & Fujita, H. (2020). Efficiently mining erasable stream patterns for intelligent systems over uncertain data. International Journal of Intelligent Systems, 36(10), 5741–5769.

    Google Scholar 

  32. Gan, W., Lin, J. C. W., Chao, H. C., Fujita, H., & Yu, P. S. (2019). Correlated utility-based pattern mining. Information Sciences, 504, 470–486.

    Article  Google Scholar 

  33. Ishita, S. Z., Ahmed, C. F., & Leung, C. K. (2021). New approaches for mining regular high utility sequential patterns. Applied Intelligence. https://doi.org/10.1007/s10489-021-02536-7

    Article  Google Scholar 

  34. Gan, W., Lin, J. C. W., Zhang, J., Fournier-Viger, P., Chao, H. C., & Yu, P. S. (2021). Fast utility mining on sequence data. IEEE Transactions on Cybernetics, 51(2), 487–500.

    Article  Google Scholar 

  35. Zahid, M. A., & Swart, H. D. (2015). The Borda majority count. Information Sciences, 295, 429–440.

    Article  Google Scholar 

  36. Chen, Y. L., & Cheng, L. C. (2009). Mining maximum consensus sequences from group ranking data. European Journal of Operational Research, 198, 241–251.

    Article  Google Scholar 

  37. Ma, L. C. (2018). Discovering consensus preferences visually based on Gower plots. International Journal of Information Technology & Decision Making, 17(3), 741–761.

    Article  Google Scholar 

  38. Choi, K., Yoo, D., Kim, G., & Suh, Y. (2012). A hybrid online-product recommendation system: Combining implicit rating-based collaborative filtering and sequential pattern analysis. Electronic Commerce Research and Applications, 11, 309–317.

    Article  Google Scholar 

  39. Pazzani, M., & Billsus, D. (1997). Learning and revising user profile: The identification of interesting web sites. Machine Learning, 27(3), 313–331.

    Article  Google Scholar 

  40. Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35(2), 231–243.

    Article  Google Scholar 

  41. Yu, K., Schwaighofer, A., Tresp, V., Xu, X., & Kriegel, H. P. (2004). Probabilistic memory-based collaborative filtering. IEEE Transactions on Knowledge and Data Engineering, 16(1), 56–69.

    Article  Google Scholar 

  42. Wang, Y., Dai, W., & Yuan, Y. (2008). Website browsing aid: A navigation graph-based recommendation systems. Decision Support Systems, 45(3), 387–400.

    Article  Google Scholar 

  43. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley symposium on mathematical statistics and probability (pp. 281–297). University of California Press 1.

  44. Kumar, P., Krishna, P. R., Bapi, R. S., & De, S. K. (2006). Clustering using similarity upper approximation. In Proceedings of IEEE international conference on fuzzy system.

  45. Kumar, P., Raju, B. S., & Krishna, P. R. (2010). A new similarity metric for sequential data. International Journal of Data Warehousing and Mining, 6(4), 16–32.

    Article  Google Scholar 

  46. Mishra, R., & Kumar, P. (2012). Clustering web logs using similarity upper approximation with different similarity measures. International Journal of Machine Learning and Computing, 2(3), 219–221.

    Article  Google Scholar 

  47. Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et des Jura. In Bulletin del la Socit Vaudoise des Sciences Naturelles 37 (pp. 547–579).

  48. Han, J., Kamber, M., & Pei, J. (2011). Data mining concepts and techniques (3rd ed.). Morgan Kaufmann Publishers.

    Google Scholar 

  49. Han, J., Pei, H., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM SIGMOD Record, 29(2), 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of the Republic of China (Grant Number: MOST 108-2410-H-239-011-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ching Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LC. Novel next-group recommendation approach based on sequential market basket information. Electron Commer Res 23, 2399–2418 (2023). https://doi.org/10.1007/s10660-022-09543-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-022-09543-x

Keywords

Navigation