Skip to main content
Log in

Implications of e-tailers’ transition from reselling to the combined reselling and agency selling

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Whether or not online retailers (“e-tailers”) should choose a reselling or agency selling business mode has been well studied by academics. In practice, many major e-tailers, including Amazon and JD.com, are moving toward a combined approach, but not toward the pure agency selling mode. We adopt a game theoretical model to examine the implications of this transition by considering a supplier that distributes its products through a bricks-and-mortar retailer and an e-tailer who has the flexibility of using reselling or combined reselling and agency selling. Conventional wisdom suggests that the agency selling would benefit the supply chain members due to the effect of eliminating double-marginalization. Our results, however, reveal that, comparing with the reselling mode, the additional agency selling is not always beneficial to the supplier nor always helpful to the bricks-and-mortar retailer. These findings not only complement the emerging literature regarding the strategic mode choice of e-tailers but also, from a practical perspective, urge caution in whether the supplier should participate in the e-tailer’s marketplace through agency selling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Data collected from Amazon/ JD.com quarterly results during 2015–2019. Note: Net service sales is measured in millions

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The net service sales of Amazon’s marketplace represent third-party seller fees earned and related fulfillment and shipping fees, and other third-party seller services.

  2. The net service sales of JD.com primarily consist of commissions earned from third-party sellers for sales made through JD.com’s online marketplace and the service fees JD.com charges them for value-added fulfillment or other services provided upon their request.

  3. For the sake of exposition, we use 6.49 yuan to $1 USD as the exchange rate (the rate reported at xe.com on Jun 22, 2018) throughout the paper.

  4. Such cost reflects the fact that the order-fulfillment costs associate with product packaging, delivering and (relative higher) returning, can be a real burden for e-tailers. The detailed discussion can be found in × 3.3.

  5. We focus our attention on the apparel as an example and highlight the cost for fulfillment services varies depending on an apparel’s category, size and weight.

References

  1. Chu, J., & Manchanda, P. (2016). Quantifying cross and direct network effects in online consumer-to-consumer platforms. Marketing Science, 35(6), 870–893.

    Article  Google Scholar 

  2. Brynjolfsson, E., Yu, H., & Rahman, M. S. (2009). Battle of the retail channels: How product selection and geography drive cross-channel competition. Management Science, 55(11), 1755–1765.

    Article  Google Scholar 

  3. Ofek, E., Katona, Z., & Sarvary, M. (2011). “Bricks and clicks”: The impact of product returns on the strategies of multichannel retailers. Marketing Science, 30(1), 42–60.

    Article  Google Scholar 

  4. Evans, P. F. (2009). Retail executive survey, 2008: Using maslow to set site investment priorities. Forrester Research, April 1.

  5. Jiang, B., Jerath, K., & Srinivasan, K. (2011). Firm strategies in the “mid tail” of platform-based retailing. Marketing Science, 30(5), 757–775.

    Article  Google Scholar 

  6. Balakrishnan, A., Sundaresan, S., & Bo, Z. (2014). Browse-and-switch: retail-online competition under value uncertainty. Production Operations Management, 23(7), 1129–1145.

    Article  Google Scholar 

  7. Mehra, A., Kumar, S., & Raju, J. S. (2018). Competitive strategies for brick-and-mortar stores to counter “showrooming”. Management Science, 64(7), 3076–3090.

    Article  Google Scholar 

  8. Mantin, B., Krishnan, H., & Dhar, T. (2014). The strategic role of third-party marketplaces in retailing. Production and Operations Management, 23(11), 1937–1949.

    Article  Google Scholar 

  9. Hagiu, A., & Wright, J. (2014). Marketplace or reseller? Management Science, 61(1), 184–203.

    Article  Google Scholar 

  10. Marketplace, P. (2021). Number of Sellers on Amazon Marketplace. Retrieved 12 September 2021, from https://www.marketplacepulse.com/amazon/number-of-sellers.

  11. JD, Com. (2019). JD.com Announces Third Quarter 2019 Results. Retrieved 12 September 2021, from https://ir.jd.com/quarterly-results.

  12. Bhasin, H. (2018). Marketing strategy of Amazon. Retrieved 18 January 2021,from https://www.marketing91.com/marketing-strategy-of-amazon/.

  13. Ramirez, L. (2019). What is amazon prime. Retrieved 18 January 2021,from https://www.tomsguide.com/us/what-is-amazon-prime,news-18041.html.

  14. Lee, Y., Lee, Z., & Larsen, K. R. T. (2003). Coping with Internet channel conflict. Communications of the ACM, 46(7), 1.

    Article  Google Scholar 

  15. Abhishek, V., Jerath, K., & Zhang, Z. J. (2015). Agency selling or reselling? channel structures in electronic retailing. Management Science, 62(8), 2259–2280.

    Article  Google Scholar 

  16. Wirl, F. (2017). Agency model and wholesale pricing: Apple versus Amazon in the e-book market. International Journal of the Economics of Business, 25, 1–22.

    Google Scholar 

  17. Pu, X., Sun, S., & Shao, J. (2020). Direct selling, reselling, or agency selling? Manufacturer’s online distribution strategies and their impact. International Journal of Electronic Commerce, 24(2), 232–254.

    Article  Google Scholar 

  18. Tian, L., Vakharia, A. J., Tan, Y., & Xu, Y. (2018). Marketplace, reseller, or hybrid: Strategic analysis of an emerging e-commerce model. Production and Operations Management, 27(8), 1595–1610.

    Article  Google Scholar 

  19. Brynjolfsson, E., Hu, Y., & Rahman, M. S. (2009). Battle of the retail channels: How product selection and geography drive cross-channel competition. Management Science, 55(11), 1755–1765.

    Article  Google Scholar 

  20. Mortimer, J. H., Nosko, C., & Sorensen, A. (2012). Supply responses to digital distribution: Recorded music and live performances. Information Economics and Policy, 24(1), 3–14.

    Article  Google Scholar 

  21. Mantin, B., Krishnan, H., & Dhar, T. (2014). The strategic role of third-party marketplaces in retailing. Production & Operations Management, 23(11), 1937–1949.

    Article  Google Scholar 

  22. Tan, Y., & Carrillo, J. E. (2017). Strategic analysis of the agency model for digital goods. Production and Operations Management, 26(4), 724–741.

    Article  Google Scholar 

  23. Coughlan, A. T. (1985). Competition and cooperation in marketing channel choice: Theory and application. Marketing Science, 4(2), 110–129.

    Article  Google Scholar 

  24. Arya, A., Mittendorf, B., & Sappington, D. E. M. (2007). The bright side of supplier encroachment. Marketing Science, 26(5), 651–659.

    Article  Google Scholar 

  25. Yoon, D.-H. (2016). Supplier encroachment and investment spillovers. Production and Operations Management, 25(11), 1839–1854.

    Article  Google Scholar 

  26. Balasubramanian, S. (1998). Mail versus mall: A strategic analysis of competition between direct marketers and conventional retailers. Marketing Science, 17(3), 181–195.

    Article  Google Scholar 

  27. Yoo, W. S., & Lee, E. (2010). Internet channel entry: A strategic analysis of mixed channel structures. Marketing Science, 30(1), 29–41.

    Article  Google Scholar 

  28. Chiang, W. Y. K., Chhajed, D., & Hess, J. D. (2003). Direct-marketing, indirect profits: A strategic analysis of dual-channel supply-chain design. Management Science, 49(1), 1–20.

    Article  Google Scholar 

  29. Letizia, P., Pourakbar, M., & Harrison, T. (2018). The impact of consumer returns on the multichannel sales strategies of manufacturers. Production and Operations Management, 27(2), 323–349.

    Article  Google Scholar 

  30. Xu, J., Zhou, X., Zhang, J., & Long, D. Z. (2021). The optimal channel structure with retail costs in a dual-channel supply chain. International Journal of Production Research, 59(1), 47–75.

    Article  Google Scholar 

  31. Mutlu, N., & Bish, E. K. (2019). Optimal demand shaping for a dual-channel retailer under growing e-commerce adoption. IISE Transactions, 51(1), 92–106.

    Article  Google Scholar 

  32. Li, Q., Li, B., Chen, P., & Hou, P. (2017). Dual-channel supply chain decisions under asymmetric information with a risk-averse retailer. Annals of Operations Research, 257(1), 423–447.

    Article  Google Scholar 

  33. Moon, I., Sarmah, S. P., & Saha, S. (2018). The impact of online sales on centralised and decentralised dual-channel supply chains. European Journal of Industrial Engineering, 12, 67.

    Article  Google Scholar 

  34. Xie, J., Zhang, W., Liang, L., Xia, Y., Yin, J., & Yang, G. (2018). The revenue and cost sharing contract of pricing and servicing policies in a dual-channel closed-loop supply chain. Journal of Cleaner Production, 191, 361–383.

    Article  Google Scholar 

  35. Zhang, Z., Luo, X., Kwong, C. K., Tang, J., & Yu, Y. (2019). Return and refund policy for product and core service bundling in the dual-channel supply chain. International Transactions in Operational Research, 26(1), 223–247.

    Article  Google Scholar 

  36. Modak, N. M., & Kelle, P. (2019). Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand. European Journal of Operational Research, 272(1), 147–161.

    Article  Google Scholar 

  37. Sadeghi, R., Taleizadeh, A. A., Chan, F. T. S., & Heydari, J. (2019). Coordinating and pricing decisions in two competitive reverse supply chains with different channel structures. International Journal of Production Research, 57(9), 2601–2625.

    Article  Google Scholar 

  38. Yao, D.-Q., & Liu, J. J. (2005). Competitive pricing of mixed retail and e-tail distribution channels. Omega, 33(3), 235–247.

    Article  Google Scholar 

  39. Foros, Ø., Kind, H. J., & Shaffer, G. (2017). Apple’s agency model and the role of most-favored-nation clauses. The RAND Journal of Economics, 48(3), 673–703.

    Article  Google Scholar 

  40. Shen, Y., Willems, S. P., & Dai, Y. (2019). Channel selection and contracting in the presence of a retail platform. Production and Operations Management, 28(5), 1173–1185.

    Article  Google Scholar 

  41. Zhang, S., & Zhang, J. (2020). Agency selling or reselling: E-tailer information sharing with supplier offline entry. European Journal of Operational Research, 280(1), 134–151.

    Article  Google Scholar 

  42. Liu, W., Yan, X., Li, X., & Wei, W. (2020). The impacts of market size and data-driven marketing on the sales mode selection in an internet platform based supply chain. Transportation Research Part E: Logistics and Transportation Review, 136, 101914.

    Article  Google Scholar 

  43. Cattani, K., Gilland, W., Heese, H. S., & Swaminathan, J. (2006). Boiling frogs: Pricing strategies for a manufacturer adding a direct channel that competes with the traditional channel. Production and Operations Management, 15(1), 40–56.

    Article  Google Scholar 

  44. Yan, W., Xiong, Y., Chu, J., Li, G., & Xiong, Z. (2018). Clicks versus Bricks: The role of durability in marketing channel strategy of durable goods manufacturers. European Journal of Operational Research, 265(3), 909–918.

    Article  Google Scholar 

  45. Zhang, X., Han, X., Liu, X., Liu, R., & Leng, J. (2015). The pricing of product and value-added service under information asymmetry: A product life cycle perspective. International Journal of Production Research, 53(1), 25–40.

    Article  Google Scholar 

  46. Mukhopadhyay, S. K., Zhu, X., & Yue, X. (2008). Optimal contract design for mixed channels under information asymmetry. Production and Operations Management, 17(6), 641–650.

    Article  Google Scholar 

  47. Mehra, A., Kumar, S., & Raju, J. S. (2017). Competitive strategies for brick-and-mortar stores to counter “showrooming”. Management Science, 64(7), 3076–3090.

    Article  Google Scholar 

  48. Liang, T.-P., & Huang, J.-S. (1998). An empirical study on consumer acceptance of products in electronic markets: A transaction cost model. Decision Support Systems, 24(1), 29–43.

    Article  Google Scholar 

  49. Kacen, J. J., Hess, J. D., & Kevin Chiang, W.-Y. (2013). Bricks or clicks? consumer attitudes toward traditional stores and online stores. Global Economics and Management Review, 18(1), 12–21.

    Article  Google Scholar 

  50. Lacourbe, P. (2016). Durable goods leasing in the presence of exporting used products to an international secondary market. European Journal of Operational Research, 250(2), 448–456.

    Article  Google Scholar 

  51. Hu, W., & Li, Y. (2012). Retail service for mixed retail and E-tail channels. Annals of Operations Research, 192(1), 151–171.

    Article  Google Scholar 

  52. Balakrishnan, A., Sundaresan, S., & Zhang, B. (2014). Browse-and-switch: retail-online competition under value uncertainty. Production & Operations Management, 23(7), 1129–1145.

    Article  Google Scholar 

  53. Shi, H., Liu, Y., & Petruzzi, N. C. (2012). Consumer heterogeneity, product quality, and distribution channels. Management Science, 59(5), 1162–1176.

    Article  Google Scholar 

  54. Tsay, A. A., & Agrawal, N. (2004). Channel conflict and coordination in the e-commerce age. Production and Operations Management, 13(1), 93–110.

    Article  Google Scholar 

  55. Tyagi, R. K. (2004). Technological advances, transaction costs, and consumer welfare. Marketing Science, 23(3), 335–344.

    Article  Google Scholar 

  56. Tanjim, H., Dylan, M., & John, M. (2011). Competing matchmakers: An experimental analysis. Management Science, 57(11), 1913–1925.

    Article  Google Scholar 

  57. Schilling. (2002). Technology success and failure in winner-take-all markets: The impact of learning orientation, timing, and network externalities. Academy of Management Journal, 45(2), 387–398.

    Article  Google Scholar 

  58. Eocman, L., Jeho, L., & Jongseok, L. (2006). Reconsideration of the winner-take-all hypothesis: Complex networks and local bias. Management Science, 52(12), 1838–1848.

    Article  Google Scholar 

  59. Huotari, P., Järvi, K., Kortelainen, S., & Huhtamäki, J. (2017). Winner does not take all: Selective attention and local bias in platform-based markets. Technological Forecasting and Social Change, 114, 313–326.

    Article  Google Scholar 

  60. eMarketer (2018). Amazon now has nearly 50% of us ecommerce market. Retrieved 18 January 2021,from https://retail.emarketer.com/article/amazon -now-has-nearly-50-of-us -ecommerce-market/5b48c542ebd4000b24140992.

  61. Fortune (2017). A record amount of brick and mortar stores will close in 2017. Retrieved 18 January 2021,from http://fortune.com/2017/10/26/a-record-amount-of-brick-andmortar-stores -will-close-in-2017/.

  62. Markman, J. (2017). Case study: why Foot Locker’s a retail loser. Retrieved 18 January 2021,from https://www.markmanspivotalpoint.com/investing/case-studyfoot - lockers -retail-loser/.

  63. Begany, T. (2011). Is online shopping killing brick-and-mortar? Retrieved 18 January 2021,from https://www.investopedia.com/financial-edge/0711/is-online-shoppingkilling-brick- and-mortar.aspx.

  64. Esenduran, G., Kemahlıoğlu-Ziya, E., & Swaminathan, J. M. (2017). Impact of take-back regulation on the remanufacturing Industry. Production and Operations Management, 26(5), 924–944.

    Article  Google Scholar 

  65. Harthorne, M. (2017). Selling Nikes on Amazon was a lucrative hustle-until now. Retrieved 18 January 2021,from http://www.newser.com/story/245029/nike-just-doesit-finally-agrees -to-sell-on-amazon.html.

Download references

Acknowledgements

This work was supported by The Major Program of National Social Science Foundation of China (No. 20&ZD084); The National Natural Science Foundation of China (No.71971043, No.72072020 and No.71672020).

Funding

The authors are grateful for research support from the National Natural Science Foundation of China, Grant Nos. 71672020, 71432005, and 71472023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan.

Appendix

Appendix

Proofs for “Implications of e-tailers’ transition from reselling to. the combined reselling and agency selling”. We use backward induction to solve for the equilibrium channel configuration. Firstly, conditional on the channel structure (R, RA), we derive the equilibrium outcomes like the demand, wholesale price, commission fees and service level with using backward induction for a specific subgame. These outcomes are presented in Table 2 of Sect. 4. Secondly, we notice that all parameters and variables must satisfy non-negativity constraints. Thus, we solve the parameter scope of these nonlinear conditions in model R and RA:\(\Delta {*} = \frac{{{8}c_{r} k\gamma^{2} + {4}k\gamma^{3} - {33}c_{r} k\gamma - {29}k\gamma^{2} + {33}k\gamma + {9}c_{r} - {9}}}{{k\gamma {(4}\gamma { - 21)}}} < c_{e} < \frac{{\gamma (c_{r} + 1)}}{2},\frac{8}{{\gamma {(}\gamma { - 4)}^{{2}} }} < k\). In the range of the threshold \(\Delta {*}\) ( referred to as \(\underline{{c_{e} }} = \frac{{{8}c_{r} k\gamma^{2} + {4}k\gamma^{3} - {33}c_{r} k\gamma - {29}k\gamma^{2} + {33}k\gamma + {9}c_{r} - {9}}}{{k\gamma {(4}\gamma { - 21)}}},\overline{{c_{e} }} = \frac{{\gamma (c_{r} + 1)}}{2},\underline {k} = \frac{8}{{\gamma {(}\gamma { - 4)}^{{2}} }}\)),for the rest of the paper), we compare the outcomes between Model R and Model RA and draw the Proposition 1–7.

Appendix A1. Proof of Proposition 1

Under model RA, in order to show the variation in the commission fee charged by the e-tailer w.r.t. the order-fulfillment costs, we take the derivative of the fee \(f\) with respect to the e-tailer's order-fulfillment costs \(c_{e}\), which yields:

$${\raise0.7ex\hbox{${\partial f}$} \!\mathord{\left/ {\vphantom {{\partial f} {\partial c}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c}$}}_{e} = \frac{{ - k\gamma (\gamma^{2} - 14\gamma + 30)}}{{4k\gamma^{3} - 36k\gamma^{2} + 66k\gamma + \gamma - 18}}$$

Clearly the numerator of the above expression is lower than zero under our assumption that \(0 < \gamma < 1\) and \(\underline{k} < k\). Thus, to prove \({\raise0.7ex\hbox{${\partial f}$} \!\mathord{\left/ {\vphantom {{\partial f} {\partial c}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c}$}}_{e} < 0\), we have to show that the denominator of the above expression is larger than zero, i.e., \(4k\gamma^{3} - 36k\gamma^{2} + 66k\gamma + \gamma - 18 > 0\), after simplification, this reduces to \(k > \frac{18 - \gamma }{{2\gamma {(2}\gamma^{2} - {18}\gamma { + 33)}}}\), which is true in the range of the threshold \(\Delta {*}\). That is to say, for any \(0 < \gamma < 1\),\(k > \underline{k}\), \(4k\gamma^{3} - 36k\gamma^{2} + 66k\gamma + \gamma - 18 > 0\) and \({\raise0.7ex\hbox{${\partial f}$} \!\mathord{\left/ {\vphantom {{\partial f} {\partial c_{e} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e} }$}} < 0\). Further we can conclude that the commission fee \(f\) is decreasing in the value of \(c_{e}\).

Similarly, we take the derivative of the fee \(f\) with respect to the bricks-and-mortar retailer's order-fulfillment costs \(c_{r}\), which yields: \({\raise0.7ex\hbox{${\partial f}$} \!\mathord{\left/ {\vphantom {{\partial f} {\partial c}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c}$}}_{r} = \frac{{( - 3k\gamma^{3} + 8k\gamma^{2} + \gamma )}}{{4k\gamma^{3} - 36k\gamma^{2} + 66k\gamma + \gamma - 18}}\). It is obvious that the value is always positive given the condition \(0 < \gamma < 1\),\(k > \underline{k}\). Therefore, the commission fee \(f\) is increasing in the value of \(c_{r}\), i.e., \({\raise0.7ex\hbox{${\partial f}$} \!\mathord{\left/ {\vphantom {{\partial f} {\partial c}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c}$}}_{r} > 0\).

Appendix A2. Proof of Proposition 2

We subtract the bricks-and-mortar retailer’s wholesales price from the e-tailer’s wholesales price in model R to obtain the following:

$$W_{Difference}^{R} = w_{e}^{R} - w_{r}^{R} = \frac{{k\gamma (\gamma - 4)^{2} }}{{8 - 2k\gamma (\gamma - 4)^{2} }}c_{e} + \frac{{k\gamma^{2} (\gamma - 4)^{2} + 2c_{r} \gamma - 2\gamma }}{{2k\gamma (\gamma - 4)^{2} - 8}} + \frac{{c_{r} - 1}}{2}$$

Notice the function \(W_{Difference}^{R} (c_{e} )\) is linear, we can obtain \(W_{Difference}^{R} (\overline{{c_{e} }} ) < 0\) and \(W_{Difference}^{R} (\underline{{c_{e} }} ) > 0\) in the range of the threshold \(\Delta {*}\), and \(0 < \gamma < 1\).Hence, it follows that there exists a \(c_{e1}^{R} \in (\underline{{c_{e} }} ,\overline{{c_{e} }} )\) such that \(W_{Difference}^{R} (c_{e1}^{R} ) = 0\). Thus, that is to true for \(c_{e} \in (c_{e1}^{R} ,\overline{{c_{e} }} )\), \(W_{Difference}^{R} < 0\), i.e., \(w_{e}^{R} < w_{r}^{R}\) and \(c_{e} \in (\underline{{c_{e} }} ,c_{e1}^{R} )\), \(W_{Difference}^{R} > 0\), i.e.,\(w_{e}^{R} > w_{r}^{R}\).

Next we compare the e-tailer’s wholesales price with the bricks-and-mortar retailer’s wholesales price in model RA. Following a similar procedure, we find \(\begin{gathered} W_{Difference}^{RA} = w_{e}^{RA} - w_{r}^{RA} \hfill \\ = \frac{{k\gamma ( - 2\gamma^{2} { + }18\gamma - 33)}}{{2k\gamma (2\gamma^{2} - 18\gamma + 33) + \gamma - 18}}c_{e} + \frac{{2k\gamma^{4} - 20k\gamma^{3} + 51k\gamma^{2} - 33k\gamma + 4c_{r} \gamma - 4\gamma - 9c_{r} + 33c_{r} k\gamma - 18c_{r} k\gamma^{2} + 2c_{r} k\gamma^{3} + 9}}{{2k\gamma (2\gamma^{2} - 18\gamma + 33) + \gamma - 18}} \hfill \\ \end{gathered}\) The function \(W_{Difference}^{RA} (c_{e} )\) is still linear. Further, we obtain \(W_{Difference}^{RA} (\overline{{c_{e} }} ) < 0\) and \(W_{Difference}^{RA} (\underline{{c_{e} }} ) > 0\) in the range of the threshold \(\Delta {*}\), and \(0 < \gamma < 1\), which shows that there exists a \(c_{e1}^{RA} \in (\underline{{c_{e} }} ,\overline{{c_{e} }} )\) such that \(W_{Difference}^{RA} (c_{e1}^{RA} ) = 0\). Hence, for \(c_{e} \in (c_{e1}^{RA} ,\overline{{c_{e} }} )\),\(W_{Difference}^{RA} < 0\),i.e.,\(w_{e}^{RA} < w_{r}^{RA}\) and for \(c_{e} \in (\underline{{c_{e} }} ,c_{e1}^{RA} )\), \(W_{Difference}^{RA} > 0\), i.e.,\(w_{e}^{RA} > w_{r}^{RA}\).

Appendix A3. Proof of Proposition 3

The difference between the e-tailer’s profits under the combined reselling and agency selling mode and the e-tailer’s profits under the reselling mode is as follows:

$$\pi_{e}^{RA} - \pi_{e}^{R} = \frac{{k( - 2c_{e} + \gamma + c_{r} \gamma )^{2} ( - 8 + 16k\gamma - 8k\gamma^{2} + k\gamma^{3} )}}{{4( - 4 + 16k\gamma - 8k\gamma^{2} + k\gamma^{3} )^{2} }} + \frac{{\left[ \begin{gathered} - 648c_{e}^{2} k + 5\gamma - 10c_{r} \gamma + 5c_{r}^{2} \gamma + 912c_{e} k\gamma + 72c_{e}^{2} k\gamma + 384c_{e} c_{r} k\gamma + 2016c_{e}^{2} k^{2} \gamma - 352k\gamma^{2} - 174c_{e} k\gamma^{2} - 2c_{e}^{2} k\gamma^{2} \hfill \\ - 208c_{r} k\gamma^{2} + 30c_{e} c_{r} k\gamma^{2} - 88c_{r}^{2} k\gamma^{2} - 2904c_{e} k^{2} \gamma^{2} - 1488c_{e}^{2} k^{2} \gamma^{2} - 1128c_{e} c_{r} k^{2} \gamma^{2} + 100k\gamma^{3} + 10c_{e} k\gamma^{3} - 26c_{r} k\gamma^{3} \hfill \\ - 6c_{e} c_{r} k\gamma^{3} - 2c_{r}^{2} k\gamma^{3} + 1089k^{2} \gamma^{3} + 2334c_{e} k^{2} \gamma^{3} + 381c_{e}^{2} k^{2} \gamma^{3} + 726c_{r} k^{2} \gamma^{3} + 642c_{e} c_{r} k^{2} \gamma^{3} + 201c_{r}^{2} k^{2} \gamma^{{3}} - 8k\gamma^{4} \hfill \\ + 6c_{r} k\gamma^{4} - 946k^{2} \gamma^{4} - 666c_{e} k^{2} \gamma^{4} - 44c_{e}^{2} k^{2} \gamma^{4} - 442c_{r} k^{2} \gamma^{4} - 96c_{e} c_{r} k^{2} \gamma^{4} - 100c_{r}^{2} k^{2} \gamma^{4} + 295k^{2} \gamma^{5} + 84c_{e} k^{2} \gamma^{5} \hfill \\ + 2c_{e}^{2} k^{2} \gamma^{5} + 76c_{r} k^{2} \gamma^{5} + 4c_{e} c_{r} k^{2} \gamma^{5} + 10c_{r}^{2} k^{2} \gamma^{5} - 40k^{2} \gamma^{6} - 4c_{e} k^{2} \gamma^{6} - 4c_{r} k^{2} \gamma^{6} + {2}k^{2} \gamma^{7} \hfill \\ \end{gathered} \right]}}{{4( - 18 + \gamma + 66k\gamma - 36k\gamma^{2} + 4k\gamma^{3} )^{2} }}$$

Let \(f(c_{e} ) = \pi_{e}^{RA} - \pi_{e}^{R}\), to prove \(\pi_{e}^{RA} > \pi_{e}^{R}\), we have to show that \(f(c_{e} ) > 0\). The function \(f(c_{e} )\) is convex, i.e., \({\raise0.7ex\hbox{${\partial^{2} f(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial^{2} f(c_{e} )} {\partial c_{e}^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e}^{2} }$}} > 0\). Further, we obtain that \({\raise0.7ex\hbox{${\partial f(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial f(c_{e} )} {\partial c_{e} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e} }$}} < 0\) and \(f(\overline{c}_{e} ) > 0\) for the threshold \(\Delta {*}\), and \(0 < \gamma < 1\). Thus the function \(f(c_{e} )\) is positive, that is to say, \(\pi_{e}^{RA} > \pi_{e}^{R}\), Hence, the e-tailer’s profits under the coexistence of reselling and agency selling is always better than the e-tailer’s profits under the reselling mode.

Appendix A4. Proof of Proposition 4

We subtract the supplier’s profits under the reselling mode from the supplier’s profits under the combined reselling and agency selling mode to obtain the following:

$$\pi_{m}^{RA} - \pi_{m}^{R} = \begin{gathered} \frac{{k\gamma (\gamma - 4)( - 2c_{e} + \gamma + c_{r} \gamma )( - 2 + 2c_{r} - 16c_{e} k + 16k\gamma + 8c_{e} k\gamma - 8k\gamma^{2} - c_{e} k\gamma^{2} + k\gamma^{3} )}}{{4( - 4 + 16k\gamma - 8k\gamma^{2} + k\gamma^{3} )^{2} }} + \frac{{(c_{r} - 1)( - 2 + 2c_{r} + 8k\gamma + 4c_{e} k\gamma - 8c_{r} k\gamma - 6k\gamma^{2} - c_{e} k\gamma^{2} + 2c_{r} k\gamma^{2} + k\gamma^{3} )}}{{2( - 8 + 32k\gamma - 16k\gamma^{2} + 2k\gamma^{3} )}} \hfill \\ + \frac{{\left[ \begin{gathered} - 162 + 324c_{r} - 162c_{r}^{2} + 28\gamma - 56c_{r} \gamma + 28c_{r}^{2} \gamma + 1188k\gamma + 276c_{e} k\gamma - 2376c_{r} k\gamma - 276c_{e} c_{r} k\gamma + 1188c_{r}^{2} k\gamma - 2016c_{e}^{2} k^{2} \gamma - 956k\gamma^{2} - 160c_{e} k\gamma^{2} \hfill \\ + 1636c_{r} k\gamma^{2} + 160c_{e} c_{r} k\gamma^{2} - 680c_{r}^{2} k\gamma^{2} - 2178k^{2} \gamma^{2} + 1452c_{e} k^{2} \gamma^{2} + 1374c_{e}^{2} k^{2} \gamma^{2} + 43{56}c_{r} k^{2} \gamma^{2} + 2580c_{e} c_{r} k^{2} \gamma^{2} - 2178c_{r}^{2} k^{2} \gamma^{2} + 244k\gamma^{3} \hfill \\ + 20c_{e} k\gamma^{3} - 328c_{r} k\gamma^{3} - 20c_{e} c_{r} k\gamma^{3} + 84c_{r}^{2} k\gamma^{3} + 2376k^{2} \gamma^{3} - 684c_{e} k^{2} \gamma^{3} - 216c_{e}^{2} k^{2} \gamma^{3} - 6204c_{r} k^{2} \gamma^{3} - 2064c_{e} c_{r} k^{2} \gamma^{3} + 1812c_{r}^{2} k^{2} \gamma^{3} - 20k\gamma^{4} \hfill \\ + 20c_{r} k\gamma^{4} - 1154k^{2} \gamma^{4} - 76c_{e} k^{2} \gamma^{4} - 12c_{e}^{2} k^{2} \gamma^{4} + 2992c_{r} k^{2} \gamma^{4} + 508c_{e} c_{r} k^{2} \gamma^{4} - 464c_{r}^{2} k^{2} \gamma^{4} + 327k^{2} \gamma^{5} + 62c_{e} k^{2} \gamma^{5} + 3c_{e}^{2} k^{2} \gamma^{5} - 578c_{r} k^{2} \gamma^{5} \hfill \\ - 38c_{e} c_{r} k^{2} \gamma^{5} + 35c_{r}^{2} k^{2} \gamma^{5} - 50k^{2} \gamma^{6} - 6c_{e} k^{2} \gamma^{6} + 38c_{r} k^{2} \gamma^{6} + 3k^{2} \gamma^{7} \hfill \\ \end{gathered} \right]}}{{4( - 18 + \gamma + 66k\gamma - 36k\gamma^{2} + 4k\gamma^{3} )^{2} }} \hfill \\ \end{gathered}$$

Let \(g(c_{e} ) = \pi_{m}^{RA} - \pi_{m}^{R}\), we can find that the function \(g(c_{e} )\) is a convex function of \(c_{e}\), i.e., \({\raise0.7ex\hbox{${\partial^{2} g(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial^{2} g(c_{e} )} {\partial c_{e}^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e}^{2} }$}} > 0\). Further, we obtain that \({\raise0.7ex\hbox{${\partial g(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial g(c_{e} )} {\partial c_{e} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e} }$}} < 0\),\(g(\underline{{c_{e} }} ) > 0\) and \(g(\overline{{c_{e} }} ) < 0\) for the threshold \(\Delta {*}\), and \(0 < \gamma < 1\). Thus it follows that there exists a \(c_{e2} \in (\underline{{c_{e} }} ,\overline{{c_{e} }} )\) such that \(g(c_{e2} ) = 0\).Hence,\(c_{e} \in (\underline{{c_{e} }} ,c_{e2} )\), \(g(c_{e} ) > 0\), i.e.,\(\pi_{m}^{RA} > \pi_{m}^{R}\), and for \(c_{e} \in (c_{e2} ,\overline{{c_{e} }} )\),\(g(c_{e} ) < 0\),i.e.,\(\pi_{m}^{RA} < \pi_{m}^{R}\).

Appendix A5. Proof of Proposition 5

We subtract the bricks-and-mortar retailer’s profits under the reselling mode from the bricks-and-mortar retailer’s profits under the combined reselling and agency selling mode to obtain the following:

$$\pi_{r}^{RA} - \pi_{r}^{R} = \frac{{( - 2 + 2c_{r} + 8k\gamma + 4c_{e} k\gamma - 8c_{r} k\gamma - 6k\gamma^{2} - c_{e} k\gamma^{2} + 2c_{r} k\gamma^{2} + k\gamma^{3} )^{2} }}{{4( - 4 + 16k\gamma - 8k\gamma^{2} + k\gamma^{3} )^{2} }} + \frac{{( - 9 + 9c_{r} + 33k\gamma + 21c_{e} k\gamma - 33c_{r} k\gamma - 29k\gamma^{2} - 4c_{e} k\gamma^{2} + 8c_{r} k\gamma^{2} + 4k\gamma^{3} )^{2} }}{{4( - 18 + \gamma + 66k\gamma - 36k\gamma^{2} + 4k\gamma^{3} )^{2} }}$$

Let \(h(c_{e} ) = \pi_{r}^{RA} - \pi_{r}^{R}\), to prove \(\pi_{r}^{RA} < \pi_{r}^{R}\), we have to show that \(h(c_{e} ) < 0\). The function \(h(c)\) is convex, i.e., \({\raise0.7ex\hbox{${\partial^{2} h(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial^{2} h(c_{e} )} {\partial c_{e}^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e}^{2} }$}} > 0\). Further, we obtain that \(h(\overline{c}_{e} ) < 0\) and \(h(\underline{{c_{e} }} ) < 0\) for the threshold \(\Delta {*}\), and \(0 < \gamma < 1\). Thus for any \(c_{e} \in (\underline{{c_{e} }} ,\overline{c}_{e} )\),\(k > \underline{k}\) and \(\gamma \in (0,1)\), the sign of the expression \(h(c)\) is negative, which shows that the bricks-and-mortar retailer get lower profits under the coexistence of reselling and agency selling than that in the reselling mode.

Appendix A6. Proof of Proposition 6

The supply chain profit can be calculated as follows:

\(\pi_{t}^{j} = \pi_{m}^{j} + \pi_{r}^{j} + \pi_{e}^{j}\). Based on the above function, we subtract the supply chain’s profits under the reselling mode from the supply chain profit’s profits under the combined reselling and agency selling, that is:

$$\pi_{t}^{RA} - \pi_{t}^{R} = \frac{{\left[ \begin{gathered} - c_{e}^{2} k^{2} \gamma^{5} - 16c_{e}^{2} k^{2} \gamma^{4} + 429c_{e}^{2} k^{2} \gamma^{3} - 2421c_{e}^{2} k^{2} \gamma^{2} + 4032c_{e}^{2} k^{2} r - 2c_{e}^{2} k\gamma^{2} + 72c_{e}^{2} k\gamma \hfill \\ - 648c_{e}^{2} k + 42c_{e} c_{r} k^{2} \gamma^{5} - 668c_{e} c_{r} k^{2} \gamma^{4} + 3306c_{e} c_{r} k^{2} \gamma^{3} - 5094c_{e} c_{r} k^{2} \gamma^{2} + 14c_{e} c_{r} k\gamma^{3} \hfill \\ - 202c_{e} c_{r} k\gamma^{2} + 1038c_{e} c_{r} k\gamma + 2c_{e} k^{2} \gamma^{6} - 10c_{e} k^{2} \gamma^{5} - 190c_{e} k^{2} \gamma^{4} + 1536c_{e} k^{2} \gamma^{3} - \hfill \\ 2970c_{e} k^{2} \gamma^{2} - 10c_{e} k\gamma^{3} + 58c_{e} k\gamma^{2} + 258c_{e} k\gamma - 25c_{r}^{2} k^{2} \gamma^{5} + 428c_{r}^{2} k^{2} \gamma^{4} - 2139c_{r}^{2} k^{2} \gamma^{3} \hfill \\ + 3267c_{r}^{2} k^{2} \gamma^{2} - 86c_{r}^{2} k\gamma^{3} + 736c_{r}^{2} k\gamma^{2} - 1782c_{r}^{2} kr - 23c_{r}^{2} \gamma + 243c_{r}^{2} - 42c_{r} k^{2} \gamma^{6} + \hfill \\ 718c_{r} k^{2} \gamma^{5} - 4162c_{r} k^{2} \gamma^{4} + 9372c_{r} k^{2} \gamma^{3} - 6534c_{r} k^{2} \gamma^{2} - 14c_{r} k\gamma^{4} + 374c_{r} k\gamma^{3} - \hfill \\ 2510c_{r} k\gamma^{2} + 3564c_{r} k\gamma + 46c_{r} \gamma - 486c_{r} - k^{2} \gamma^{7} + 26k^{2} \gamma^{6} - 264k^{2} \gamma^{5} + 1313k^{2} \gamma^{4} \hfill \\ - 3201k^{2} \gamma^{3} + 3267k^{2} \gamma^{2} + 12k\gamma^{4} - 216k\gamma^{3} + 1126k\gamma^{2} - 1782k\gamma - 23\gamma + 243 \hfill \\ \end{gathered} \right]}}{{4(\gamma + 66k\gamma - 36k\gamma^{2} + 4k\gamma^{3} - 18)^{2} }} - \frac{{\left[ \begin{gathered} - c_{e}^{2} k^{2} \gamma^{4} + 20c_{e}^{2} k^{2} \gamma^{3} - 112c_{e}^{2} k^{2} \gamma^{2} + 192c_{e}^{2} k^{2} \gamma - 32c_{e}^{2} k \hfill \\ + 2c_{e} c_{r} k^{2} \gamma^{5} - 32c_{e} c_{r} k^{2} \gamma^{4} + 160c_{e} c_{r} k^{2} \gamma^{3} - 256c_{e} c_{r} k^{2} \gamma^{2} \hfill \\ - 4c_{e} c_{r} k\gamma^{2} + 48c_{e} c_{r} k\gamma - 8c_{e} k^{2} \gamma^{4} + 64c_{e} k^{2} \gamma^{3} - 128c_{e} k^{2} \gamma^{2} \hfill \\ + 4c_{e} k\gamma^{2} + 16c_{e} k\gamma - c_{r}^{2} k^{2} \gamma^{5} + 20c_{r}^{2} k^{2} \gamma^{4} - 112c_{r}^{2} k^{2} \gamma^{3} + \hfill \\ 192c_{r}^{2} k^{2} \gamma^{2} - 4c_{r}^{2} k\gamma^{3} + 32c_{r}^{2} k\gamma^{2} - 96c_{r}^{2} k\gamma + 12c_{r}^{2} - 2c_{r} k^{2} \gamma^{6} \hfill \\ + 34c_{r} k^{2} \gamma^{5} - 200c_{r} k^{2} \gamma^{4} + 480c_{r} k^{2} \gamma^{3} - 384c_{r} k^{2} \gamma^{2} + 12c_{r} k\gamma^{3} \hfill \\ - 112c_{r} k\gamma^{2} + 192c_{r} k\gamma - 24c_{r} + k^{2} \gamma^{6} - 13k^{2} \gamma^{5} + 68k^{2} \gamma^{4} \hfill \\ - 176k^{2} \gamma^{3} + 192k^{2} \gamma^{2} - 8k\gamma^{3} + 48k\gamma^{2} - 96k\gamma + 12 \hfill \\ \end{gathered} \right]}}{{4(k\gamma^{3} - 8k\gamma^{2} + 16k\gamma - 4)^{2} }}$$

Let \(l(c_{e} ) = \pi_{t}^{RA} - \pi_{t}^{R}\), we can find that the function \(l(c_{e} )\) is a convex function of \(c_{e}\), i.e., \({\raise0.7ex\hbox{${\partial^{2} l(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial^{2} l(c_{e} )} {\partial c_{e}^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e}^{2} }$}} > 0\). Further, we obtain that \({\raise0.7ex\hbox{${\partial l(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial l(c_{e} )} {\partial c_{e} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e} }$}} < 0\),\(l(\underline{{c_{e} }} ) > 0\) and \(l(\overline{{c_{e} }} ) < 0\) for the threshold \(\Delta {*}\), and \(0 < \gamma < 1\). Thus it follows that there exists a \(c_{e3} \in (\underline{{c_{e} }} ,\overline{{c_{e} }} )\) such that \(l(c_{e3} ) = 0\).Hence,\(c_{e} \in (\underline{{c_{e} }} ,c_{e3} )\), \(l(c_{e} ) > 0\), i.e.,\(\pi_{t}^{RA} > \pi_{t}^{R}\), and for \(c_{e} \in (c_{e3} ,\overline{{c_{e} }} )\),\(l(c_{e} ) < 0\),i.e.,\(\pi_{t}^{RA} < \pi_{t}^{R}\).

Appendix A7. Proof of Proposition 7

Consumer surplus (CS), which consists of two components: consumers purchasing products from the bricks-and-mortar retailer and through an e-tailer, is calculated as follows:

\(CS = \int_{{1 - q_{e} - q_{m} - q_{r} }}^{{1 - q_{e} - q_{m} }} {(\gamma u - p_{e} )} du + \int_{{1 - q_{r} }}^{1} {(u - p_{r} )} du\). Thus, we can obtain the difference of consumer surplus between the combined mode and reselling mode as follows:

$$CS^{RA} - CS^{R} = \frac{{\left[ \begin{gathered} 9c_{e}^{2} k^{2} \gamma^{5} - 176c_{e}^{2} k^{2} \gamma^{4} + 1167c_{e}^{2} k^{2} \gamma^{3} - 3015c_{e}^{2} k^{2} \gamma^{2} + 2304c_{e}^{2} k^{2} \gamma + 14c_{e} c_{r} k^{2} \gamma^{5} \hfill \\ - 124c_{e} c_{r} k^{2} \gamma^{4} + 210c_{e} c_{r} k^{2} \gamma^{3} + 342c_{e} c_{r} k^{2} \gamma^{2} - 28c_{e} c_{r} k\gamma^{3} + 270c_{e} c_{r} k\gamma^{2} - + 19\gamma \hfill \\ 582c_{e} c_{r} k\gamma - 18c_{e} k^{2} \gamma^{6} + 338c_{e} k^{2} \gamma^{5} - 2210c_{e} k^{2} \gamma^{4} + 5820c_{e} k^{2} \gamma^{3} - 4950c_{e} k^{2} \gamma^{2} \hfill \\ + 28c_{e} k\gamma^{3} - 270c_{e} k\gamma^{2} + 582c_{e} k\gamma - 39c_{r}^{2} k^{2} \gamma^{5} + 412c_{r}^{2} k^{2} \gamma^{4} - 1293c_{r}^{2} k^{2} \gamma^{3} + \hfill \\ 1089c_{r}^{2} k^{2} \gamma^{2} - 44c_{r}^{2} k\gamma^{3} + 378c_{r}^{2} k\gamma^{2} - 594c_{r}^{2} k\gamma + 19c_{r}^{2} \gamma + 81c_{r}^{2} - 14c_{r} k^{2} \gamma^{6} + \hfill \\ 202c_{r} k^{2} \gamma^{5} - 1034c_{r} k^{2} \gamma^{4} + 2244c_{r} k^{2} \gamma^{3} - 2178c_{r} k^{2} \gamma^{2} + 28c_{r} k\gamma^{4} - 182c_{r} k\gamma^{3} \hfill \\ - 174c_{r} k\gamma^{2} + 1188c_{r} k\gamma - 38c_{r} \gamma - 162c_{r} + 9k^{2} \gamma^{7} - 162k^{2} \gamma^{6} + 1004k^{2} \gamma^{5} - \hfill \\ 2393k^{2} \gamma^{4} + 1353k^{2} \gamma^{3} + 1089k^{2} \gamma^{2} - 28k\gamma^{4} + 226k\gamma^{3} - 204k\gamma^{2} - 594k\gamma + 81 \hfill \\ \end{gathered} \right]}}{{8(\gamma + 66k\gamma - 36k\gamma^{2} + 4k\gamma^{3} - 18)^{2} }} - \frac{{\left[ \begin{gathered} - 3c_{e}^{2} k^{2} \gamma^{4} + 28c_{e}^{2} k^{2} \gamma^{3} - 80c_{e}^{2} k^{2} \gamma^{2} + 64c_{e}^{2} k^{2} \gamma + 2c_{e} c_{r} k^{2} \gamma^{5} \hfill \\ - 16c_{e} c_{r} k^{2} \gamma^{4} + 32c_{e} c_{r} k^{2} \gamma^{3} + 4c_{e} c_{r} k\gamma^{2} - 16c_{e} c_{r} k\gamma + 4c_{e} k^{2} \gamma^{5} \hfill \\ - 40c_{e} k^{2} \gamma^{4} + 128c_{e} k^{2} \gamma^{3} - 128c_{e} k^{2} \gamma^{2} - 4c_{e} k\gamma^{2} + 16c_{e} k\gamma - \hfill \\ 3c_{r}^{2} k^{2} \gamma^{5} + 28c_{r}^{2} k^{2} \gamma^{4} - 80c_{r}^{2} k^{2} \gamma^{3} + 64c_{r}^{2} k^{2} \gamma^{2} - 4c_{r}^{2} k\gamma^{3} + 24c_{r}^{2} k\gamma^{2} \hfill \\ - 32c_{r}^{2} k\gamma + 4c_{r}^{2} - 2c_{r} k^{2} \gamma^{6} + 22c_{r} k^{2} \gamma^{5} - 88c_{r} k^{2} \gamma^{4} + 160c_{r} k^{2} \gamma^{3} \hfill \\ - 128c_{r} k^{2} \gamma^{2} + 4c_{r} k\gamma^{3} - 32c_{r} k\gamma^{2} + 64c_{r} k\gamma - 8c_{r} - k^{2} \gamma^{6} + 9k^{2} \gamma^{5} \hfill \\ - 20k^{2} \gamma^{4} - 16k^{2} \gamma^{3} + 64k^{2} \gamma^{2} + 8k\gamma^{2} - 32k\gamma + 4 \hfill \\ \end{gathered} \right]}}{{8(k\gamma^{3} - 8k\gamma^{2} + 16k\gamma - 4)^{2} }}$$

Let \(z(c_{e} ) = CS^{RA} - CS^{R}\), to prove \(CS^{RA} > CS^{R}\), we have to show that \(z(c_{e} ) > 0\). The function \(z(c_{e} )\) is convex, i.e., \({\raise0.7ex\hbox{${\partial^{2} z(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial^{2} z(c_{e} )} {\partial c_{e}^{2} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e}^{2} }$}} > 0\). Further, we obtain that \({\raise0.7ex\hbox{${\partial z(c_{e} )}$} \!\mathord{\left/ {\vphantom {{\partial z(c_{e} )} {\partial c_{e} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial c_{e} }$}} < 0\) and \(z(\overline{c}_{e} ) > 0\) for the threshold \(\Delta {*}\), and \(0 < \gamma < 1\). Thus the function \(z(c_{e} )\) is positive, that is to say, \(CS^{RA} > CS^{R}\), Hence, the consumers under the coexistence of reselling and agency selling is always better than consumers under the reselling mode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, F., Chen, S. & Yan, W. Implications of e-tailers’ transition from reselling to the combined reselling and agency selling. Electron Commer Res 23, 1885–1920 (2023). https://doi.org/10.1007/s10660-021-09520-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-021-09520-w

Keywords

Navigation