Skip to main content
Log in

Will the community O2O service supply channel benefit the elderly healthcare service supply chain?

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

This paper studies the coordination of the elderly healthcare service supply chain (EHSSC) within a dual-channel setting. A game-theoretic framework is introduced to analyse how best the elderly service integrator (ESI) and elderly service provider (ESP) would make decisions and interact amidst cooperation and competition. Three cases including the centralised case, the Bertrand game case and the Stackelberg game case are examined to obtain the optimal relationship structure suitable for the EHSSC coordination. The associated loss due to customer dissatisfaction and the value increment due to the ESI’s service enhancement effort are incorporated in the model. Also, by considering customer’s health status, optimal pricing strategies are investigated for both the ESI and ESP under two different service demand classes. The main results are summarised as follows. First, the value increment due to the ESI’s service enhancement effort may have different impacts on the ESP’s prices in different service demand classes. Second, the whole supply chain would achieve effective coordination when the ESP acts as the Stackelberg leader with an appropriate setting of the wholesale price. Third, a lower wholesale price set by the ESP could benefit both the ESI and ESP in achieving greater demand and profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.elderlycommission.gov.hk/en/download/library/Community%20Care%20Services%20Report%202011_eng.pdf.

  2. According to the definition provided by the Social Welfare Department of the Government of the Hong Kong SAR, DE/DCU (Day Care Centre/Unit) is a centre-based community care service aiming at providing personal care, nursing care, rehabilitation exercise and social activities for those frail elderly persons. EHCCS/IHCS (Enhanced Home and Community Care Services/Integrated Home Care Services) are home-based community care services providing care and support services for frail elderly persons in their familiar home and community environment.

References

  1. Allee, V. (2000). Reconfiguring the value network. Journal of Business Strategy, 21(4), 36–39.

    Article  Google Scholar 

  2. Bian, J., Lai, K. K., & Hua, Z. (2017). Service outsourcing under different supply chain power structures. Annals of Operations Research, 248(1), 123–142.

    Article  Google Scholar 

  3. Cai, G., Zhang, Z. G., & Zhang, M. (2009). Game theoretical perspectives on dual-channel supply chain competition with price discounts and pricing schemes. International Journal of Production Economics, 117(1), 80–96.

    Article  Google Scholar 

  4. Caswell, N. S., Nikolaou, C., Sairamesh, J., Bitsaki, M., Koutras, G. D., & Iacovidis, G. (2008). Estimating value in service systems: A case study of a repair service system. IBM Systems Journal, 47(1), 87–100.

    Article  Google Scholar 

  5. Chan, H.-L., Choi, T.-M., Hui, C.-L., & Ng, S.-F. (2015). Quick response healthcare apparel supply chains: Value of RFID and coordination. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(6), 887–900.

    Article  Google Scholar 

  6. Chen, C.-C., Yamada, T., Nakashima, T., Chiu, I.-M. (2017). Substitution of formal and informal home care service use and nursing home service use: Health outcomes, decision-making preferences, and implications for a public health policy. Frontiers in Public Health, 5(297).

  7. Chen, J., Zhang, H., & Sun, Y. (2012). Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain. Omega, 40(5), 571–583.

    Article  Google Scholar 

  8. CIO Council. Value measuring methodology: How to guide. http://www.cio.gov/documents/ValueMeasuring_Methodology_HowToGuide_Oct_2002.pdf.

  9. Dan, B., Zhang, S., & Zhou, M. (2017). Strategies for warranty service in a dual-channel supply chain with value-added service competition. International Journal of Production Research, 1–23.

  10. de Vries, J., & Huijsman, R. (2011). Supply chain management in health services: An overview. Supply Chain Management-an International Journal, 16(3), 159–165.

    Article  Google Scholar 

  11. Devaraj, S., Ow, T. T., & Kohli, R. (2013). Examining the impact of information technology and patient flow on healthcare performance: A Theory of Swift and Even Flow (TSEF) perspective. Journal of Operations Management, 31(4), 181–192.

    Article  Google Scholar 

  12. Dobrzykowski, D., Deilami, V. S., Hong, P., & Kim, S. C. (2014). A structured analysis of operations and supply chain management research in healthcare (1982–2011). International Journal of Production Economics, 147, 514–530.

    Article  Google Scholar 

  13. Gao, C., Edwin Cheng, T. C., Shen, H., & Liang, X. (2016). Incentives for quality improvement efforts coordination in supply chains with partial cost allocation contract. International Journal of Production Research, 54(20), 6216–6231.

    Article  Google Scholar 

  14. Guo, X., & He, L. (2012). Tourism supply-chain coordination: The cooperation between tourism hotel and tour operator. Tourism Economics, 18(6), 1361–1376.

    Article  Google Scholar 

  15. Henao, C. A., Ferrer, J. C., Muñoz, J. C., & Vera, J. (2016). Multiskilling with closed chains in a service industry: A robust optimization approach. International Journal of Production Economics, 179, 166–178.

    Article  Google Scholar 

  16. Hu, Q., Schwarz, L. B., & Uhan, N. A. (2012). The impact of group purchasing organizations on healthcare-product supply chains. Manufacturing & Service Operations Management, 14(1), 7–23.

    Article  Google Scholar 

  17. Jhang-Li, J., & Chang, C. (2017). Analyzing the operation of cloud supply chain: Adoption barriers and business model. Electronic Commerce Research, 17, 627–660.

    Article  Google Scholar 

  18. Kang, S. (2017). Study on the strategies for activating silver care in O2O platform. In K. J. Kim & N. Joukov (Eds.), Mobile and wireless technologies 2017: ICMWT 2017 (pp. 470–475). Singapore: Springer Singapore.

    Google Scholar 

  19. Lin, W. (2014). Community service contracting for the elderly in urban China. Ph.D. thesis, City University of Hong Kong.

  20. Liu, W. H., Xie, D., Liu, Y., & Liu, X. Y. (2015). Service capability procurement decision in logistics service supply chain: A research under demand updating and quality guarantee. International Journal of Production Research, 53(2), 488–510.

    Article  Google Scholar 

  21. Liu, W. H., Liu, Y., Zhu, D. L., Wang, Y. J., & Liang, Z. C. (2016). The influences of demand disruption on logistics service supply chain coordination: A comparison of three coordination modes. International Journal of Production Economics, 179(SEP), 59–76.

  22. Ma, C., Wang, Z., Xiaofei, X., & Qian, W. (2013). Measuring service value based on service semantics. Journal of Service Science and Management, 06, 56–68.

    Article  Google Scholar 

  23. Rahmani, K., & Yavari, M. (2019). Pricing policies for a dual-channel green supply chain under demand disruptions. Computers & Industrial Engineering, 127(January), 493–510.

  24. Roland Berger. (2017). Research on Citywide O2O and Community O2O Markets. Roland Berger, Accessed July 17. https://www.rolandberger.com/en/press/China%E2%80%99s-community-O2O-market-has-great-potential.html.

  25. Saha, E., & Ray, P. K. (2019). Modelling and analysis of inventory management systems in healthcare: A review and reflections. Computers & Industrial Engineering, 137(November), 106051.

    Article  Google Scholar 

  26. Seth, N., Deshmukh, S. G., & Vrat, P. (2006). A framework for measurement of quality of service in supply chains. Supply Chain Management: An International Journal, 11(1), 82–94.

    Article  Google Scholar 

  27. Tang, S. Y., & Kouvelis, P. (2014). Pay-back-revenue-sharing contract in coordinating supply chains with random yield. Production and Operations Management, 23(12), 2089–2102.

    Article  Google Scholar 

  28. Taylor, T. A. (2002). Supply chain coordination under channel rebates with sales effort effects. Management Science, 48(8), 992–1007.

    Article  Google Scholar 

  29. Tsay, A. A., & Agrawal, N. (2000). Channel dynamics under price and service competition. Manufacturing & Service Operations Management, 2(4), 372–391.

    Article  Google Scholar 

  30. Wang, Y., Wallace, S. W., Shen, B., & Choi, T.-M. (2015). Service supply chain management: A review of operational models. European Journal of Operational Research, 247(3), 685–698.

    Article  Google Scholar 

  31. Xiao, T., & Xu, T. (2013). Coordinating price and service level decisions for a supply chain with deteriorating item under vendor managed inventory. International Journal of Production Economics, 145(2), 743–752.

    Article  Google Scholar 

  32. Xu, G., Dan, B., Zhang, X., & Liu, C. (2014). Coordinating a dual-channel supply chain with risk-averse under a two-way revenue sharing contract. International Journal of Production Economics, 147, 171–179.

    Article  Google Scholar 

  33. Yang, D., & Xiao, T. (2017). Coordination of a supply chain with loss-averse consumers in service quality. International Journal of Production Research, 55(12), 3411–3430.

    Article  Google Scholar 

  34. Yao, D.-Q., Yue, X., & Liu, J. (2008). Vertical cost information sharing in a supply chain with value-adding retailers. Omega, 36(5), 838–851.

    Article  Google Scholar 

  35. Yee-Loong Chong, A., Liu, M. J., Luo, J., Keng-Boon, O. (2015). Predicting RFID adoption in healthcare supply chain from the perspectives of users. International Journal of Production Economics, 159 (Supplement C), 66–75.

  36. Zhan, H., Liu, G., Guan, X., & Bai, H. (2006). Recent developments in institutional elder care in China. Journal of Aging & Social Policy, 18(2), 85–108.

    Article  Google Scholar 

  37. Zhang, H., Kong, G., & Rajagopalan, S. (2017). Contract design by service providers with private effort. Management Science, 0(0), 1–18.

  38. Zhang, J., Liu, G., Zhang, Q., & Bai, Z. (2015). Coordinating a supply chain for deteriorating items with a revenue sharing and cooperative investment contract. Omega, 56(Supplement C), 37–49.

  39. Zhang, W., Zhou, D., & Liu, L. (2014). Contracts for changing times: Sourcing with raw material price volatility and information asymmetry. Manufacturing & Service Operations Management, 16(1), 133–148.

    Article  Google Scholar 

  40. Zhang, Y., Puterman, M. L., & Atkins, D. (2012). Residential long-term care capacity planning: The shortcomings of ratio-based forecasts. Healthcare policy = Politiques de sante, 7(4), 68–81.

  41. Zhao, H., Xiong, C., Gavirneni, S., & Fein, A. (2012). Fee-for-service contracts in pharmaceutical distribution supply chains: design, analysis, and management. Manufacturing & Service Operations Management, 14(4), 685–699.

    Article  Google Scholar 

  42. Zhao, J. (2019). Coordination of elderly healthcare service supply chain with information asymmetry: Designs of option contracts under different demand distribution statuses. RAIRO-Operations Research. https://doi.org/10.1051/ro/2019032.

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 71801053) and Humanities and Social Sciences Research Youth Fund Project of the Ministry of Education of China (Grant No. 18YJC630143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proposition 1

Taking Eqs. (1) and (2) into \(\pi_{ip}\), \(\pi_{ip} = \mathop \sum \limits_{k = I,II} \left\{ {\left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{i}^{k} - c_{p}^{k} } \right) - \gamma e^{2} } \right]D_{i}^{k} + \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{p}^{k} - c_{p}^{k} } \right)D_{p}^{k} } \right\} - \lambda s^{2} ,\) then,

$$\frac{{\partial^{2} \pi_{ip} }}{{\partial p_{i}^{2} }} = - \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {b_{k} + \delta } \right) < 0,$$
$$\frac{{\partial^{2} \pi_{ip} }}{{\partial p_{p}^{2} }} = - 2\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {b_{k} + \delta } \right) < 0,$$

where \(k = I,II\).

$$\frac{{\partial \pi_{ip} }}{{\partial p_{i} }} = \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left[ {\left( {1 - {{\varphi }}} \right)a_{k} - b_{k} p_{i}^{k} + \theta s + ce + \delta \left( {p_{p}^{k} - p_{i}^{k} + e} \right)} \right] - \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{i}^{k} - c_{p}^{k} } \right) - \gamma e^{2} } \right]\left( {b_{k} + \delta } \right) + \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{p}^{k} - c_{p}^{k} } \right)\delta$$
$$\frac{{\partial \pi_{ip} }}{{\partial p_{p} }} = \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{i}^{k} - c_{p}^{k} } \right) - \gamma e^{2} } \right]\delta + \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left[ {{{\varphi }}a_{k} - b_{k} p_{p}^{k} + \theta s + \delta \left( {p_{i}^{k} - p_{p}^{k} - e} \right)} \right] - \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{p}^{k} - c_{p}^{k} } \right)\left( {b_{k} + \delta } \right)$$
$$\frac{{\partial \pi_{ip} }}{{\partial p_{i} }} = 0$$
$$\frac{{\partial \pi_{ip} }}{{\partial p_{p} }} = 0$$
$$p_{i}^{k*} = \frac{{\left( {b_{k} + \delta - \varphi b_{k} } \right)a_{k} + \left( {b_{k} c + \delta c + b_{k} \delta } \right)e}}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} + \frac{{c_{p}^{k} }}{2} + \frac{{\gamma e^{2} }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]}} + \frac{\theta s}{{2b_{k} }}$$
$$p_{p}^{k*} = \frac{{\left( {\delta + \varphi b_{k} } \right)a_{k} + \left( {c - b_{k} } \right)\delta e}}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} + \frac{{c_{p}^{k} }}{2} + \frac{\theta s}{{2b_{k} }}$$

where \(k = I,II\).

Corollary 1

According to results from Proposition 1,

$$\frac{{\partial p_{p}^{k*} }}{{\partial {\text{s}}}} = \frac{\theta }{{2b_{k} }} > 0,$$
$$\frac{{\partial p_{i}^{k*} }}{{\partial {\text{s}}}} = \frac{\theta }{{2b_{k} }} - \frac{{\gamma e^{2} \varepsilon }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]^{2} }}.$$

Then, If \(\theta < \varepsilon \gamma e^{2} b_{k} ,\) then \(\sqrt {\frac{{\gamma e^{2} b_{k} }}{\varepsilon \theta }} + 1 - \frac{1}{\varepsilon } > 1\). Since \(s \in \left[ {0,1} \right] ,\) we can get \(s < \sqrt {\frac{{\gamma e^{2} b_{k} }}{\varepsilon \theta }} + 1 - \frac{1}{\varepsilon }\). Thus, \(\frac{{\partial p_{i}^{k*} }}{{\partial {\text{s}}}} < 0\). If \(\varepsilon \gamma e^{2} b_{k} < \theta < \frac{{\varepsilon \gamma e^{2} b_{k} }}{{\left( {1 - \varepsilon } \right)^{2} }} ,\) then \(0 < \sqrt {\frac{{\gamma e^{2} b_{k} }}{\varepsilon \theta }} + 1 - \frac{1}{\varepsilon } < 1\). Thus, when \(0 \le s < \sqrt {\frac{{\gamma e^{2} b_{k} }}{\varepsilon \theta }} + 1 - \frac{1}{\varepsilon } ,\) then \(\frac{{\partial p_{i}^{k*} }}{{\partial {\text{s}}}} < 0\); when \(\sqrt {\frac{{\gamma e^{2} b_{k} }}{\varepsilon \theta }} + 1 - \frac{1}{\varepsilon } < s < 1,\) then \(\frac{{\partial p_{i}^{k*} }}{{\partial {\text{s}}}} > 0\). If \(\theta > \frac{{\varepsilon \gamma e^{2} b_{k} }}{{\left( {1 - \varepsilon } \right)^{2} }} ,\) then \(\sqrt {\frac{{\gamma e^{2} b_{k} }}{\varepsilon \theta }} + 1 - \frac{1}{\varepsilon } < 0 ,\) Since \(s \in \left[ {0,1} \right] ,\) we can get \(s > \sqrt {\frac{{\gamma e^{2} b_{k} }}{\varepsilon \theta }} + 1 - \frac{1}{\varepsilon }\). Thus, \(\frac{{\partial p_{i}^{k*} }}{{\partial {\text{s}}}} > 0.\)

Corollary 2

According to results from Proposition 1,

$$\frac{{\partial p_{i}^{k*} }}{\partial e} = \frac{{\left( {b_{k} c + \delta c + b_{k} \delta } \right)}}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} + \frac{\gamma e}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]}} > 0$$
$$\frac{{\partial p_{p}^{k*} }}{\partial e} = \frac{{\left( {c - b_{k} } \right)\delta }}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}}$$

Here, since \(b_{I} > b_{II} ,\) if \(c > b_{I} > b_{II} ,\) \(\frac{{\partial p_{p}^{I*} }}{{\partial {\text{e}}}} > 0\) and \(\frac{{\partial p_{p}^{II*} }}{{\partial {\text{e}}}} > 0 ,\) if \(b_{I} > c > b_{II} ,\) \(\frac{{\partial p_{p}^{I*} }}{{\partial {\text{e}}}} < 0\) and \(\frac{{\partial p_{p}^{II*} }}{{\partial {\text{e}}}} > 0\); if \(b_{I} > b_{II} > c\), \(\frac{{\partial p_{p}^{I*} }}{{\partial {\text{e}}}} < 0\) and \(\frac{{\partial p_{p}^{II*} }}{{\partial {\text{e}}}} < 0.\)

Proposition 2

Since \(\frac{{\partial^{2} \pi_{i} }}{{\partial p_{i}^{2} }} = - 2\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {b_{k} + \delta } \right) < 0 ,\) \(\frac{{\partial^{2} \pi_{p} }}{{\partial p_{p}^{2} }} = - 2\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {b_{k} + \delta } \right) < 0,\) where \(k = I,II.\)

Then, the optimal selling prices for the ESI and ESP can be derived by the following equations:

$$\frac{{\partial \pi_{i} }}{{\partial p_{i} }} = \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left[ {\left( {1 - {{\varphi }}} \right)a_{k} - b_{k} p_{i}^{k} + \theta s + ce + \delta \left( {p_{p}^{k} - p_{i}^{k} + e} \right)} \right] - \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{i}^{k} - w_{p}^{k} } \right) - \gamma e^{2} } \right]\left( {b_{k} + \delta } \right) = 0$$
$$\frac{{\partial \pi_{p} }}{{\partial p_{p} }} = \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left[ {{{\varphi }}a_{k} - b_{k} p_{p}^{k} + \theta s + \delta \left( {p_{i}^{k} - p_{p}^{k} - e} \right)} \right] - \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{p}^{k} - c_{p}^{k} } \right)\left( {b_{k} + \delta } \right) + \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {w_{p}^{k} - c_{p}^{k} } \right)\delta = 0$$

From above equations, the optimal selling prices (\(p_{iB}^{k}\) and \(p_{pB}^{k}\)) for the ESI and ESP are obtained as follows:

$$p_{iB}^{k} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{1}^{k} + 2\left( {\delta + b_{k} } \right)^{2} \gamma e^{2} }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} + \frac{\theta s}{{2b_{k} + \delta }},$$
$$p_{pB}^{k} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{2}^{k} + \delta \left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} + \frac{\theta s}{{2b_{k} + \delta }},$$

where \(f_{1}^{k} = \left( {2b_{k} + 2\delta - \delta \varphi - 2\varphi b_{k} } \right)a_{k} + \left( {2cb_{k} + 2c\delta + 2\delta b_{k} + \delta^{2} } \right)e + \left[ {2\left( {\delta + b_{k} } \right)^{2} + \delta^{2} } \right]w_{p}^{k} + \delta b_{k} c_{p}^{k} ,\) \(f_{2}^{k} = \left( {\delta + \delta \varphi + 2\varphi b_{k} } \right)a_{k} + \left( {\delta c - 2\delta b_{k} - \delta^{2} } \right)e + 3\delta \left( {\delta + b_{k} } \right)w_{p}^{k} + 2b_{k} \left( {\delta + b_{k} } \right)c_{p}^{k} ,\) \(k = I,II.\)

Corollary 3

According to results from Proposition 2,

$$\frac{{\partial p_{pB}^{k*} }}{{\partial {\text{s}}}} = \frac{\theta }{{2b_{k} + \delta }} - \frac{{\delta \left( {\delta + b_{k} } \right)\gamma e^{2} \varepsilon }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]^{2} \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}},$$
$$\frac{{\partial p_{iB}^{k*} }}{{\partial {\text{s}}}} = \frac{\theta }{{2b_{k} + \delta }} - \frac{{2\left( {\delta + b_{k} } \right)^{2} \gamma e^{2} \varepsilon }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]^{2} \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}.$$

If \(\theta < \frac{{\delta \varepsilon \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} ,\) \(\sqrt {\frac{{\delta \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon } > 1 ,\) Since \(s \in \left[ {0,1} \right] ,\) thus \(s < \sqrt {\frac{{\delta \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon }\). Then, we can get \(\frac{{\partial p_{pB}^{k*} }}{{\partial {\text{s}}}} < 0.\)

If \(\frac{{\delta \varepsilon \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} < \theta < \frac{{\delta \varepsilon \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]\left( {1 - \varepsilon } \right)^{2} }},\) then \(0 < \sqrt {\frac{{\delta \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon } < 1\). Since \(s \in \left[ {0,1} \right] ,\) when \(0 \le s < \sqrt {\frac{{\delta \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon } ,\) then \(\frac{{\partial p_{pB}^{k*} }}{{\partial {\text{s}}}} < 0\); when \(\sqrt {\frac{{\delta \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon } < s < 1 ,\) then \(\frac{{\partial p_{pB}^{k*} }}{{\partial {\text{s}}}} > 0.\)

If \(\theta > \frac{{\delta \varepsilon \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]\left( {1 - \varepsilon } \right)^{2} }} ,\) then \(\sqrt {\frac{{\delta \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon } < 0 ,\) Since \(s \in \left[ {0,1} \right] ,\) thus \(s > \sqrt {\frac{{\delta \left( {2b_{k} + \delta } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon }\). Then, we can get \(\frac{{\partial p_{pB}^{k*} }}{{\partial {\text{s}}}} > 0.\)

Similarly, for the ESI, we can get that if \(\theta < \frac{{2\left( {\delta + b_{k} } \right)^{2} \left( {2b_{k} + \delta } \right)\varepsilon \gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} ,\) then \(\frac{{\partial p_{iB}^{k*} }}{{\partial {\text{s}}}} < 0.\)

If \(\frac{{2\left( {\delta + b_{k} } \right)^{2} \left( {2b_{k} + \delta } \right)\varepsilon \gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} < \theta < \frac{{2\left( {\delta + b_{k} } \right)^{2} \left( {2b_{k} + \delta } \right)\varepsilon \gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]\left( {1 - \varepsilon } \right)^{2} }} ,\) when \(0 \le s < \sqrt {\frac{{2\left( {\delta + b_{k} } \right)^{2} \left( {2b_{k} + \delta } \right)\varepsilon \gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon } ,\) then \(\frac{{\partial p_{iB}^{k*} }}{{\partial {\text{s}}}} < 0\); when \(\sqrt {\frac{{2\left( {\delta + b_{k} } \right)^{2} \left( {2b_{k} + \delta } \right)\varepsilon \gamma e^{2} }}{{\varepsilon \theta \left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}} + 1 - \frac{1}{\varepsilon } < s < 1 ,\) then \(\frac{{\partial p_{iB}^{k*} }}{{\partial {\text{s}}}} > 0.\)

If \(\theta > \frac{{2\left( {\delta + b_{k} } \right)^{2} \left( {2b_{k} + \delta } \right)\varepsilon \gamma e^{2} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]\left( {1 - \varepsilon } \right)^{2} }} ,\) then \(\frac{{\partial p_{iB}^{k*} }}{{\partial {\text{s}}}} > 0.\)

Corollary 4

According to Proposition 2,

$$\frac{{\partial p_{iB}^{k*} }}{\partial e} = \frac{{2cb_{k} + 2c\delta + 2\delta b_{k} + \delta^{2} }}{{4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} }} + \frac{{4\left( {\delta + b_{k} } \right)^{2} \gamma e}}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} > 0,$$
$$\frac{{\partial p_{pB}^{k*} }}{\partial e} = \frac{{\delta \left( {c - 2b_{k} - \delta } \right)}}{{4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} }} + \frac{{2\delta \left( {\delta + b_{k} } \right)\gamma e}}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}}.$$

When \(\frac{{\partial p_{pB}^{k*} }}{\partial e} = 0 ,\) \(e = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {2b_{k} + \delta - c} \right)}}{{2\gamma \left( {\delta + b_{k} } \right)}} ,\) namely, \(e_{I} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {2b_{I} + \delta - c} \right)}}{{2\gamma \left( {\delta + b_{I} } \right)}} ,\) \(e_{II} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {2b_{II} + \delta - c} \right)}}{{2\gamma \left( {\delta + b_{II} } \right)}} ,\) then \(e_{I} > e_{II} .\)

Here, if \(e > e_{I}\), \(\frac{{\partial p_{pB}^{I*} }}{{\partial {\text{e}}}} > 0\) and \(\frac{{\partial p_{pB}^{II*} }}{{\partial {\text{e}}}} > 0\); if \(e_{I} > e > e_{II}\), \(\frac{{\partial p_{pB}^{I*} }}{{\partial {\text{e}}}} < 0\) and \(\frac{{\partial p_{pB}^{II*} }}{{\partial {\text{e}}}} > 0\); if \(e_{I} > e_{II} > e\), \(\frac{{\partial p_{pB}^{I*} }}{{\partial {\text{e}}}} < 0\) and \(\frac{{\partial p_{pB}^{II*} }}{{\partial {\text{e}}}} < 0.\)

Proposition 3

According to the results from Proposition 1and 2, when \(p_{i}^{k*} = p_{iB}^{k} ,\) namely, \(\frac{{\left( {b_{k} + \delta - \varphi b_{k} } \right)a_{k} + \left( {b_{k} c + \delta c + b_{k} \delta } \right)e}}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} + \frac{{c_{p}^{k} }}{2} + \frac{{\gamma e^{2} }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]}} + \frac{\theta s}{{2b_{k} }} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{1}^{k} + 2\left( {\delta + b_{k} } \right)^{2} \gamma e^{2} }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} + \frac{\theta s}{{2b_{k} + \delta }},\) then,

$$w_{p1}^{k} = \frac{{\delta \left\{ {\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{3}^{k} - \delta \left( {b_{k}^{2} + 2\delta b_{k} } \right)\gamma e^{2} } \right\}}}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {b_{k}^{2} + 2\delta b_{k} } \right)\left[ {2\left( {\delta + b_{k} } \right)^{2} + \delta^{2} } \right]}} + \frac{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right] - 2\delta b_{k} }}{{2\left[ {2\left( {\delta + b_{k} } \right)^{2} + \delta^{2} } \right]}}c_{p}^{k} + \frac{{\left( {2b_{k} + 3\delta } \right)\delta \theta s}}{{2b_{k} \left[ {2\left( {\delta + b_{k} } \right)^{2} + \delta^{2} } \right]}}.$$

Moreover, if \(w_{p}^{k} > w_{p1}^{k}\), \(p_{i}^{k*} < p_{iB}^{k*}\); if \(w_{p}^{k} < w_{p1}^{k}\), \(p_{i}^{k*} > p_{iB}^{k*} .\)

When \(p_{p}^{k*} = p_{pB}^{k*}\), namely, \(\frac{{\left( {\delta + \varphi b_{k} } \right)a_{k} + \left( {c - b_{k} } \right)\delta e}}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} + \frac{{c_{p}^{k} }}{2} + \frac{\theta s}{{2b_{k} }} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{2}^{k} + \delta \left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} + \frac{\theta s}{{2b_{k} + \delta }},\) then,

$$w_{p2}^{k} = \frac{{f_{4}^{k} - 2\left( {b_{k}^{2} + 2\delta b_{k} } \right)\left( {\delta + b_{k} } \right)\gamma e^{2} }}{{6\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {b_{k}^{2} + 2\delta b_{k} } \right)\left( {\delta + b_{k} } \right)}} + \frac{{3\delta + 4b_{k} }}{{6\left( {\delta + b_{k} } \right)}}c_{p}^{k} + \frac{{\left( {2b_{k} + 3\delta } \right)\theta s}}{{6b_{k} \left( {\delta + b_{k} } \right)}}.$$

Moreover, if \(w_{p}^{k} > w_{p2}^{k} ,\) \(p_{p}^{k*} < p_{pB}^{k*}\); if \(w_{p}^{k} < w_{p2}^{k} ,\) \(p_{p}^{k*} > p_{pB}^{k*} ,\) where

$$f_{1}^{k} = \left( {2b_{k} + 2\delta - \delta \varphi - 2\varphi b_{k} } \right)a_{k} + \left( {2cb_{k} + 2c\delta + 2\delta b_{k} + \delta^{2} } \right)e + \left[ {2\left( {\delta + b_{k} } \right)^{2} + \delta^{2} } \right]w_{p}^{k} + \delta b_{k} c_{p}^{k} ,$$
$$f_{2}^{k} = \left( {\delta + \delta \varphi + 2\varphi b_{k} } \right)a_{k} + \left( {\delta c - 2\delta b_{k} - \delta^{2} } \right)e + 3\delta \left( {\delta + b_{k} } \right)w_{p}^{k} + 2b_{k} \left( {\delta + b_{k} } \right)c_{p}^{k} ,$$
$$f_{3}^{k} = \left( {3\delta b_{k} + 3\delta^{2} + 2\varphi b_{k}^{2} + \varphi \delta b_{k} } \right)a_{k} + \left( {3c\delta^{2} - \delta^{2} b_{k} - 2\delta b_{k}^{2} + 3c\delta b_{k} } \right)e,$$
$$f_{4}^{k} = \left( {4\delta b_{k} + 3\delta^{2} - 2\varphi b_{k}^{2} - \varphi \delta b_{k} + 2b_{k}^{2} } \right)a_{k} + \left( {4c\delta b_{k} + \delta^{2} b_{k} + 2\delta b_{k}^{2} + 3c\delta^{2} + 2cb_{k} } \right)e,\;k = I,II.$$

Proposition 4

Set \(D_{iB}^{k*} = D_{i}^{k*} \left( {p_{iB}^{k*} } \right)\) and \(D_{pB}^{k*} = D_{i}^{k*} \left( {p_{pB}^{k*} } \right) ,\) taking \(p_{i}^{k*}\) and \(p_{p}^{k*} ,\) \(p_{iB}^{k*}\) and \(p_{pB}^{k*}\) into \(\left( {D_{i}^{k*} + D_{p}^{k*} } \right)\) and \(\left( {D_{iB}^{k*} + D_{pB}^{k*} } \right),\)

when \(\left( {D_{i}^{k*} + D_{p}^{k*} } \right) - \left( {D_{iB}^{k*} + D_{pB}^{k*} } \right) = b_{k} p_{iB}^{k} + b_{k} p_{pB}^{k} - b_{k} p_{i}^{k} - b_{k} p_{p}^{k} > 0 ,\) there exist threshold wholesale prices \(w_{p3}^{k} ,\) namely,

$$w_{p3}^{k} = \frac{{\delta \left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {a_{k} + ce} \right) - \delta b_{k} \gamma e^{2} }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} + \frac{{b_{k} + \delta }}{{b_{k} + 2\delta }}c_{p}^{k} + \frac{\delta \theta s}{{b_{k} \left( {b_{k} + 2\delta } \right)}}.$$

Proposition 5

Since \(\frac{{\partial^{2} \pi_{i} }}{{\partial p_{i}^{2} }} = - 2\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {b_{k} + \delta } \right) < 0 ,\) where \(k = I,II.\)

$$\frac{{\partial \pi_{i} }}{{\partial p_{i} }} = \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left[ {\left( {1 - {{\varphi }}} \right)a_{k} - b_{k} p_{i}^{k} + \theta s + ce + \delta \left( {p_{p}^{k} - p_{i}^{k} + e} \right)} \right] - \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{i}^{k} - w_{p}^{k} } \right) - \gamma e^{2} } \right]\left( {b_{k} + \delta } \right) = 0$$
$$p_{iS}^{k} = \frac{{\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left[ {\left( {1 - {{\varphi }}} \right)a_{k} + \theta s + ce + \delta \left( {p_{p}^{k} + e} \right)} \right] + \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)w_{p}^{k} + \gamma e^{2} } \right]\left( {b_{k} + \delta } \right)}}{{2\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {b_{k} + \delta } \right)}}$$

Taking \(p_{iS}^{k}\) into \(\pi_{p} ,\)

$$\frac{{\partial \pi_{p} }}{{\partial p_{p} }} = \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left[ {{{\varphi }}a_{k} - b_{k} p_{p}^{k} + \theta s + \delta \left( {p_{iS}^{k} - p_{p}^{k} - e} \right)} \right] + \left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{p}^{k} - c_{p}^{k} } \right)\left( {\frac{{\delta^{2} }}{{2\left( {b_{k} + \delta } \right)}} - b_{k} - \delta } \right) + \frac{\delta }{2}\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {w_{p}^{k} - c_{p}^{k} } \right) = 0$$

Then,

$$p_{pS}^{k*} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {f_{2}^{k} - \left( {\delta^{2} + \delta b_{k} } \right)w_{p}^{k} } \right] + \gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}} + \frac{{2b_{k}^{2} + 3\delta b_{k} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}}c_{p}^{k} + \frac{{\left( {2b_{k} + 3\delta } \right)\theta s}}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}},$$

where \(f_{2}^{k} = \left( {\delta + \delta \varphi + 2\varphi b_{k} } \right)a_{k} + \left( {\delta c - 2\delta b_{k} - \delta^{2} } \right)e + 3\delta \left( {\delta + b_{k} } \right)w_{p}^{k} + 2b_{k} \left( {\delta + b_{k} } \right)c_{p}^{k} .\)

$$p_{iS}^{k*} = \frac{{\delta p_{pS}^{k*} + \left( {1 - \varphi } \right)a_{k} + \left( {\delta + c} \right)e + \left( {\delta + b_{k} } \right)w_{p}^{k} }}{{2\left( {\delta + b_{k} } \right)}} + \frac{{\gamma e^{2} }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]}} + \frac{\theta s}{{2\left( {\delta + b_{k} } \right)}}$$

When \(p_{p}^{k*} = p_{pS}^{k*} ,\)

$$\frac{{\left( {\delta + \varphi b_{k} } \right)a_{k} + \left( {c - b_{k} } \right)\delta e}}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} + \frac{{c_{p}^{k} }}{2} + \frac{\theta s}{{2b_{k} }} = \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {f_{2}^{k} - \left( {\delta^{2} + \delta b_{k} } \right)w_{p}^{k} } \right] + \gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}} + \frac{{2b_{k}^{2} + 3\delta b_{k} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}}c_{p}^{k} + \frac{{\left( {2b_{k} + 3\delta } \right)\theta s}}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}},$$

Then, \(w_{p4}^{k} = \frac{{\left( {b_{k} + \delta - \varphi b_{k} } \right)a_{k} + \left( {cb_{k} + \delta b_{k} + c\delta } \right)e}}{{2\left( {b_{k}^{2} + 2\delta b_{k} } \right)}} - \frac{{\gamma e^{2} }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]}} + \frac{1}{2}c_{p}^{k} + \frac{\theta s}{{2b_{k} }}.\)

Moreover, if \(w_{p}^{k} > w_{p4}^{k} ,\) \(p_{p}^{k*} < p_{pS}^{k*}\); if \(w_{p}^{k} < w_{p4}^{k} ,\) \(p_{p}^{k*} > p_{pS}^{k*}\).

Corollary 5

According to results from Proposition 5,

$$\frac{{\partial p_{pS}^{k*} }}{{\partial {\text{s}}}} = \frac{{\left( {2b_{k} + 3\delta } \right)\theta }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}} - \frac{{\gamma e^{2} \varepsilon \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]^{2} \left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}}.$$

Since \(\frac{{\partial p_{iS}^{k*} }}{{\partial {\text{s}}}} = \frac{\delta }{{2\left( {\delta + b_{k} } \right)}}\frac{{\partial p_{pS}^{k*} }}{{\partial {\text{s}}}} - \frac{{\gamma e^{2} \varepsilon }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]^{2} }} + \frac{\theta }{{2\left( {\delta + b_{k} } \right)}},\) thus

$$\frac{{\partial p_{iS}^{k*} }}{{\partial {\text{s}}}} = \frac{{\left( {4b_{k}^{2} + 10b_{k} \delta + 5\delta^{2} } \right)\theta }}{{4\left( {\delta + b_{k} } \right)\left( {2b_{k}^{2} + 4b_{k} \delta + \delta^{2} } \right)}} - \frac{{\left( {4b_{k}^{2} + 8b_{k} \delta + 3\delta^{2} } \right)\gamma e^{2} \varepsilon }}{{4\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]^{2} \left( {2b_{k}^{2} + 4b_{k} \delta + \delta^{2} } \right)}}.$$

If \(\theta < \frac{{\varepsilon \gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left( {2b_{k} + 3\delta } \right)}} ,\) \(\sqrt {\frac{{\gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\varepsilon \theta \left( {2b_{k} + 3\delta } \right)}}} + 1 - \frac{1}{\varepsilon } > 1 ,\) Since \(s \in \left[ {0,1} \right] ,\) thus \(s < \sqrt {\frac{{\gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\varepsilon \theta \left( {2b_{k} + 3\delta } \right)}}} + 1 - \frac{1}{\varepsilon }\). Then, we can get \(\frac{{\partial p_{pS}^{k*} }}{{\partial {\text{s}}}} < 0\).

If \(\frac{{\varepsilon \gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left( {2b_{k} + 3\delta } \right)}} < \theta < \frac{{\varepsilon \gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left( {1 - \varepsilon } \right)^{2} \left( {2b_{k} + 3\delta } \right)}} ,\) then \(0 < \sqrt {\frac{{\gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\varepsilon \theta \left( {2b_{k} + 3\delta } \right)}}} + 1 - \frac{1}{\varepsilon } < 1\). Since \(s \in \left[ {0,1} \right] ,\) when \(0 \le s < \sqrt {\frac{{\gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\varepsilon \theta \left( {2b_{k} + 3\delta } \right)}}} + 1 - \frac{1}{\varepsilon } ,\) then \(\frac{{\partial p_{pS}^{k*} }}{{\partial {\text{s}}}} < 0\); when \(\sqrt {\frac{{\gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\varepsilon \theta \left( {2b_{k} + 3\delta } \right)}}} + 1 - \frac{1}{\varepsilon } < s < 1 ,\) then \(\frac{{\partial p_{pS}^{k*} }}{{\partial {\text{s}}}} > 0.\)

if \(\theta > \frac{{\varepsilon \gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left( {1 - \varepsilon } \right)^{2} \left( {2b_{k} + 3\delta } \right)}} ,\) then \(\sqrt {\frac{{\gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\varepsilon \theta \left( {2b_{k} + 3\delta } \right)}}} + 1 - \frac{1}{\varepsilon } < 0 ,\) Since \(s \in \left[ {0,1} \right] ,\) thus \(s > \sqrt {\frac{{\gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\varepsilon \theta \left( {2b_{k} + 3\delta } \right)}}} + 1 - \frac{1}{\varepsilon }\). Then, we can get \(\frac{{\partial p_{pS}^{k*} }}{{\partial {\text{s}}}} > 0.\)

Similarly, for the ESI, we can get that if \(\theta < \frac{{\gamma e^{2} \varepsilon \left( {\delta + b_{k} } \right)\left( {4b_{k}^{2} + 8b_{k} \delta + 3\delta^{2} } \right)}}{{\left( {4b_{k}^{2} + 10b_{k} \delta + 5\delta^{2} } \right)}} ,\) then \(\frac{{\partial p_{iS}^{k*} }}{{\partial {\text{s}}}} < 0.\)

If \(\frac{{\gamma e^{2} \varepsilon \left( {\delta + b_{k} } \right)\left( {4b_{k}^{2} + 8b_{k} \delta + 3\delta^{2} } \right)}}{{\left( {4b_{k}^{2} + 10b_{k} \delta + 5\delta^{2} } \right)}} < \theta < \frac{{\gamma e^{2} \varepsilon \left( {\delta + b_{k} } \right)\left( {4b_{k}^{2} + 8b_{k} \delta + 3\delta^{2} } \right)}}{{\left( {1 - \varepsilon } \right)^{2} \left( {4b_{k}^{2} + 10b_{k} \delta + 5\delta^{2} } \right)}} ,\) when \(0 \le s < \sqrt {\frac{{\gamma e^{2} \left( {\delta + b_{k} } \right)\left( {4b_{k}^{2} + 8b_{k} \delta + 3\delta^{2} } \right)}}{{\varepsilon \theta \left( {4b_{k}^{2} + 10b_{k} \delta + 5\delta^{2} } \right)}}} + 1 - \frac{1}{\varepsilon } ,\) then \(\frac{{\partial p_{iS}^{k*} }}{{\partial {\text{s}}}} < 0\); when \(\sqrt {\frac{{\gamma e^{2} \left( {\delta + b_{k} } \right)\left( {4b_{k}^{2} + 8b_{k} \delta + 3\delta^{2} } \right)}}{{\varepsilon \theta \left( {4b_{k}^{2} + 10b_{k} \delta + 5\delta^{2} } \right)}}} + 1 - \frac{1}{\varepsilon } < s < 1 ,\) then \(\frac{{\partial p_{iS}^{k*} }}{{\partial {\text{s}}}} > 0\).

If \(\theta > \frac{{\gamma e^{2} \varepsilon \left( {\delta + b_{k} } \right)\left( {4b_{k}^{2} + 8b_{k} \delta + 3\delta^{2} } \right)}}{{\left( {1 - \varepsilon } \right)^{2} \left( {4b_{k}^{2} + 10b_{k} \delta + 5\delta^{2} } \right)}} ,\) then \(\frac{{\partial p_{iS}^{k*} }}{{\partial {\text{s}}}} > 0\).

Proposition 6

Set \(p_{iB}^{I*} > p_{iS}^{I*}\),

then \(\frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{1}^{I} + 2\left( {\delta + b_{I} } \right)^{2} \gamma e^{2} }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{I} } \right)^{2} - \delta^{2} } \right]}} + \frac{\theta s}{{2b_{k} + \delta }} > \frac{{\delta p_{pS}^{I*} + \left( {1 - \varphi } \right)a_{I} + \left( {\delta + c} \right)e + \left( {\delta + b_{I} } \right)w_{p}^{I} }}{{2\left( {\delta + b_{I} } \right)}} + \frac{{\gamma e^{2} }}{{2\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]}} + \frac{\theta s}{{2\left( {\delta + b_{k} } \right)}},\)

where \(f_{1}^{I} = \left( {2b_{I} + 2\delta - \delta \varphi - 2\varphi b_{I} } \right)a_{I} + \left( {2cb_{I} + 2c\delta + 2\delta b_{I} + \delta^{2} } \right)e + \left[ {2\left( {\delta + b_{I} } \right)^{2} + \delta^{2} } \right]w_{p}^{I} + \delta b_{I} c_{p}^{I} .\)

It can be derived that \(w_{p}^{I} > \frac{{\delta \left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{5}^{I} + \delta^{2} \left( {\delta + b_{I} } \right)\gamma e^{2} }}{{4\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {b_{I}^{2} + 2\delta b_{I} } \right)\left( {\delta + b_{I} } \right)}} + \frac{{10\delta b_{I} + 4b_{I}^{2} + 5\delta^{2} }}{{4\left( {\delta + b_{I} } \right)\left( {b_{I} + 2\delta } \right)}}c_{p}^{I} + \frac{{\left( {3\delta + 2b_{I} } \right)\delta \theta s}}{{4b_{I} \left( {\delta + b_{I} } \right)\left( {b_{I} + 2\delta } \right)}},\)

where \(f_{5}^{I} = \left( {\delta + \varphi \delta + 2\varphi b_{I} } \right)a_{I} + \delta \left( {c\delta - \delta - 2b_{I} } \right)e.\)

Similarly, if \(p_{iB}^{I*} \le p_{iS}^{I*} ,\) there is \(w_{p}^{I} \le \frac{{\delta \left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{5}^{I} + \delta^{2} \left( {\delta + b_{I} } \right)\gamma e^{2} }}{{4\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {b_{I}^{2} + 2\delta b_{I} } \right)\left( {\delta + b_{I} } \right)}} + \frac{{10\delta b_{I} + 4b_{I}^{2} + 5\delta^{2} }}{{4\left( {\delta + b_{I} } \right)\left( {b_{I} + 2\delta } \right)}}c_{p}^{I} + \frac{{\left( {3\delta + 2b_{I} } \right)\delta \theta s}}{{4b_{I} \left( {\delta + b_{I} } \right)\left( {b_{I} + 2\delta } \right)}}\)

Therefore, set \(w_{p5}^{k} = \frac{{\delta \left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{5}^{k} + \delta^{2} \left( {\delta + b_{k} } \right)\gamma e^{2} }}{{4\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left( {b_{k}^{2} + 2\delta b_{k} } \right)\left( {\delta + b_{k} } \right)}} + \frac{{10\delta b_{I} + 4b_{I}^{2} + 5\delta^{2} }}{{4\left( {\delta + b_{I} } \right)\left( {b_{I} + 2\delta } \right)}}c_{p}^{I} + \frac{{\left( {3\delta + 2b_{I} } \right)\delta \theta s}}{{4b_{I} \left( {\delta + b_{I} } \right)\left( {b_{I} + 2\delta } \right)}},\)

if \(w_{p}^{k} > w_{p5}^{k} ,\) then \(p_{iB}^{k*} > p_{iS}^{k*} ,\) \(p_{pB}^{k*} > p_{pS}^{k*} ,\)

if \(w_{p}^{k} = w_{p5}^{k} ,\) then \(p_{iB}^{k*} = p_{iS}^{k*} ,\) \(p_{pB}^{k*} = p_{pS}^{k*} ,\)

if \(w_{p}^{k} < w_{p5}^{k} ,\) \(p_{iB}^{k*} < p_{iS}^{k*} ,\) \(p_{pB}^{k*} < p_{pS}^{k*}\).

Proposition 7

If \(p_{pS}^{k*} > p_{pB}^{k*} ,\) then \(\frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {f_{2}^{k} - \left( {\delta^{2} + \delta b_{k} } \right)w_{p}^{k} } \right] + \gamma e^{2} \left( {\delta^{2} + \delta b_{k} } \right)}}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}} + \frac{{2b_{k}^{2} + 3\delta b_{k} }}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}}c_{p}^{k} + \frac{{\left( {2b_{k} + 3\delta } \right)\theta s}}{{\left[ {4\left( {\delta + b_{k} } \right)^{2} - 2\delta^{2} } \right]}} - \frac{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]f_{2}^{k} + \delta \left( {\delta + b_{k} } \right)\gamma e^{2} }}{{\left[ {1 - \varepsilon \left( {1 - s} \right)} \right]\left[ {4\left( {\delta + b_{k} } \right)^{2} - \delta^{2} } \right]}} - \frac{\theta s}{{2b_{k} + \delta }} > 0.\)\(\pi_{pS}^{*} - \pi_{pB}^{*} > 0\).

Similarly, if \(p_{pS}^{k*} < p_{pB}^{k*}\), then \(\pi_{pS}^{*} - \pi_{pB}^{*} > 0\).

Further, if \(w_{p}^{k} > w_{p5}^{k}\), \(\pi_{iS}^{*} < \pi_{iB}^{*}\); if \(w_{p}^{k} = w_{p5}^{k}\), \(\pi_{iS}^{*} = \pi_{iB}^{*}\); if \(w_{p}^{k} < w_{p5}^{k}\), \(\pi_{iS}^{*} > \pi_{iB}^{*}\).

Proposition 8

Let \(\pi_{o} - \pi_{t} > 0\), where \(\pi_{o}\) is the ESP’s revenue from the online channel \(\pi_{o} = \mathop \sum \limits_{k = I,II} \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{p}^{k} - c_{p}^{k} } \right)} \right]D_{p}^{k} ,\) and \(\pi_{t}\) is the ESP’s revenue from the traditional channel \(\pi_{t} = \mathop \sum \limits_{k = I,II} \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {w_{p}^{k} - c_{p}^{k} } \right)} \right]D_{i}^{k}\).

When \(\mathop \sum \limits_{k = I,II} \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {p_{p}^{k} - c_{p}^{k} } \right)} \right]D_{p}^{k} > \mathop \sum \limits_{k = I,II} \left[ {\left( {1 - \varepsilon \left( {1 - s} \right)} \right)\left( {w_{p}^{k} - c_{p}^{k} } \right)} \right]D_{i}^{k} ,\)

Hence, \(\varphi_{0}\) is obtained: \(\varphi_{0} = \frac{{\mathop \sum \nolimits_{k = I,II} \left[ {\left( {a_{k} - b_{k} p_{i}^{k} } \right)w_{p}^{k} + \left( {\delta + b_{k} } \right)\left( {p_{p}^{k} } \right)^{2} + \delta \left( {p_{p}^{k} - p_{i}^{k} } \right)w_{p}^{k} + \left( {\delta + c} \right)ew_{p}^{k} + \delta ep_{p}^{k} - \delta p_{i}^{k} p_{p}^{k} + \left( {w_{p}^{k} - p_{p}^{k} } \right)\theta s} \right]}}{{\mathop \sum \nolimits_{k = I,II} a_{k} \left[ {\left( {p_{p}^{k} - c_{p}^{k} } \right) + \left( {w_{p}^{k} - c_{p}^{k} } \right)} \right]}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J. Will the community O2O service supply channel benefit the elderly healthcare service supply chain?. Electron Commer Res 22, 1617–1650 (2022). https://doi.org/10.1007/s10660-020-09425-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-020-09425-0

Keywords

Navigation