Skip to main content

Advertisement

Log in

On Structural Theories for Ionic Polymer Metal Composites: Balancing Between Accuracy and Simplicity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Ionic polymer metal composites (IPMCs) are soft electroactive materials that are finding increasing use as actuators in several engineering domains, where there is a need of large compliance and low activation voltage. Similar to traditional sandwich structures, an IPMC comprises a hydrated ionomer core that is sandwiched by two stiffer electrodes. The application of a voltage across the electrodes drives charge migration within the ionomer, which, in turn, contributes to the development of an eigenstress, associated with osmotic pressure and Maxwell stress. Critical to IPMC actuation is the variation of the eigenstress through the thickness of the ionomer, which is responsible for strain localization at the ionomer-electrode interfaces. Despite considerable progress in the development of reliable continuum theories and finite element tools, accurate structural theories that could beget physical insight into the inner workings of IPMC actuation are lacking. Here, we seek to bridge this gap by contributing a principled methodology to structural modeling of IPMC actuation. Our approach begins with the study of the IPMC electrochemistry through the method of matched asymptotic expansions, which yields a semi-analytical expression for the eigenstress as a function of the applied voltage. Hence, we establish a total potential energy that accounts for the strain energy of the ionomer, the strain energy of the electrodes, and the work performed by the eigenstress. By projecting the IPMC kinematics on select beam-like representations and imposing the stationarity of the total potential energy, we formulate rigorous structural theories for IPMC actuation. Not only do we examine classical low-order and higher-order beam theories, but we also propose enriched theories that account for strain localization near the electrodes. The accuracy of these theories is assessed through comparison with finite element simulations on a plane-strain problem of non-uniform bending. Our results indicate that an enriched Euler-Bernoulli beam theory, with three independent field variables, is successful in capturing the main features of IPMC actuation at a limited computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Strictly speaking, one should refer to this theory as Kirchhoff-Love plate theory for cylindrical bending, given the underlying plane-strain assumptions.

References

  1. Oguro, K.: Preparation procedure - Ion-exchange polymer metal composites. (IPMC) membranes (Retrieved on August 10, 2018). URL https://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMC_PrepProcedure.htm

  2. Shahinpoor, M. (ed.): Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles. Smart Materials Series. Royal Society of Chemistry, Cambridge (2015)

    Google Scholar 

  3. Jo, C., Pugal, D., Oh, I.K., Kim, K.J., Asaka, K.: Prog. Polym. Sci. 38(7), 1037 (2013). https://doi.org/10.1016/j.progpolymsci.2013.04.003

    Article  Google Scholar 

  4. Carrico, J.D., Tyler, T., Leang, K.K.: Int. J. Smart Nano Mater. 8(4), 144 (2017). https://doi.org/10.1080/19475411.2018.1438534

    Article  ADS  Google Scholar 

  5. Bhandari, B., Lee, G.Y., Ahn, S.H.: Int. J. Precis. Eng. Manuf. 13(1), 141 (2012). https://doi.org/10.1007/s12541-012-0020-8

    Article  Google Scholar 

  6. Carpi, F., Smela, E. (eds.): Biomedical Applications of Electroactive Polymer Actuators Wiley, New York (2009). https://doi.org/10.1002/9780470744697

    Book  Google Scholar 

  7. Chen, Z.: Robot. Biomim. 4(1), 24 (2017). https://doi.org/10.1186/s40638-017-0081-3

    Article  Google Scholar 

  8. Stalbaum, T., Trabia, S., Hwang, T., Olsen, Z., Nelson, S., Shen, Q., Lee, D.C., Kim, K.J., Carrico, J., Leang, K.K., Palmre, V., Nam, J., Park, I., Tiwari, R., Kim, D., Kim, S.: In: Bar-Cohen, Y. (ed.) Advances in Manufacturing and Processing of Materials and Structures, pp. 379–395. CRC Press, Boca Raton (2018). Chap. 15, URL https://www.taylorfrancis.com/books/9781315232409/chapters/10.1201/b22020-15

    Google Scholar 

  9. Trabia, S., Olsen, Z., Kim, K.J.: Smart Mater. Struct. 26(11), 115029 (2017). https://doi.org/10.1088/1361-665X/aa919f

    Article  ADS  Google Scholar 

  10. Bahramzadeh, Y., Shahinpoor, M.: Soft Robot. 1(1), 38 (2014). https://doi.org/10.1089/soro.2013.0006

    Article  Google Scholar 

  11. Fortuna, L., Graziani, S., La Rosa, M., Nicolosi, D., Sicurella, G., Umana, E.: Eur. Phys. J. Appl. Phys. 46(1), 12513 (2009). https://doi.org/10.1051/epjap/2009019

    Article  Google Scholar 

  12. Cellini, F., Grillo, A., Porfiri, M.: Appl. Phys. Lett. 106(13), 131902 (2015). https://doi.org/10.1063/1.4916672

    Article  ADS  Google Scholar 

  13. Kim, J., Jeon, J.H., Kim, H.J., Lim, H., Oh, I.K.: ACS Nano 8(3), 2986 (2014). https://doi.org/10.1021/nn500283q

    Article  Google Scholar 

  14. Johanson, U., Punning, A., Aabloo, A.: In: Shahinpoor, M. (ed.) Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, vol. 1, pp. 215–227. Royal Society of Chemistry, Cambridge (2015). https://doi.org/10.1039/9781782622581

    Chapter  Google Scholar 

  15. de Gennes, P.G., Okumura, K., Shahinpoor, M., Kim, K.J.: Europhys. Lett. 50(4), 513 (2000). https://doi.org/10.1209/epl/i2000-00299-3

    Article  ADS  Google Scholar 

  16. Nemat-Nasser, S., Li, J.Y.: J. Appl. Phys. 87(7), 3321 (2000). https://doi.org/10.1063/1.372343

    Article  ADS  Google Scholar 

  17. Porfiri, M.: J. Appl. Phys. 104(10), 104915 (2008). https://doi.org/10.1063/1.3017467

    Article  ADS  Google Scholar 

  18. Chen, Z., Tan, X.: IEEE/ASME Trans. Mechatron. 13(5), 519 (2008). https://doi.org/10.1109/TMECH.2008.920021

    Article  Google Scholar 

  19. Wallmersperger, T., Leo, D.J., Kothera, C.S.: J. Appl. Phys. 101(2), 024912 (2007). https://doi.org/10.1063/1.2409362

    Article  ADS  Google Scholar 

  20. Wallmersperger, T., Akle, B.J., Leo, D.J., Kröplin, B.: Compos. Sci. Technol. 68(5), 1173 (2008). https://doi.org/10.1016/j.compscitech.2007.06.001

    Article  Google Scholar 

  21. Zhu, Z., Asaka, K., Chang, L., Takagi, K., Chen, H.: J. Appl. Phys. 114(8), 084902 (2013). https://doi.org/10.1063/1.4818412

    Article  ADS  Google Scholar 

  22. Nardinocchi, P., Pezzulla, M., Placidi, L.: J. Intell. Mater. Syst. Struct. 22(16), 1887 (2011). https://doi.org/10.1177/1045389X11417195

    Article  Google Scholar 

  23. Del Bufalo, G., Placidi, L., Porfiri, M.: Smart Mater. Struct. 17(4), 045010 (2008). https://doi.org/10.1088/0964-1726/17/4/045010

    Article  ADS  Google Scholar 

  24. Leichsenring, P., Serdas, S., Wallmersperger, T., Bluhm, J., Schröder, J.: Smart Mater. Struct. 26(4), 045004 (2017). https://doi.org/10.1088/1361-665X/aa590e

    Article  ADS  Google Scholar 

  25. Asaka, K., Oguro, K., Nishimura, Y., Mizuhata, M., Takenaka, H.: Polym. J. 27, 436 (1995). https://doi.org/10.1295/polymj.27.436

    Article  Google Scholar 

  26. Shahinpoor, M., Kim, K.J.: Smart Mater. Struct. 13(6), 1362 (2004). https://doi.org/10.1088/0964-1726/13/6/009

    Article  ADS  Google Scholar 

  27. Porfiri, M., Leronni, A., Bardella, L.: Extrem. Mech. Lett. 13, 78 (2017). https://doi.org/10.1016/j.eml.2017.01.009

    Article  Google Scholar 

  28. Porfiri, M., Sharghi, H., Zhang, P.: J. Appl. Phys. 123(1), 014901 (2018). https://doi.org/10.1063/1.5004573

    Article  ADS  Google Scholar 

  29. Cha, Y., Porfiri, M.: J. Mech. Phys. Solids 71, 156 (2014). https://doi.org/10.1016/j.jmps.2014.07.006

    Article  ADS  MathSciNet  Google Scholar 

  30. Hong, W., Zhao, X., Suo, Z.: J. Mech. Phys. Solids 58(4), 558 (2010). https://doi.org/10.1016/j.jmps.2010.01.005

    Article  ADS  MathSciNet  Google Scholar 

  31. Boldini, A., Porfiri, M.: Int. J. Eng. Sci. 149, 103227 (2020). https://doi.org/10.1016/j.ijengsci.2020.103227

    Article  Google Scholar 

  32. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  33. Allen, H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon Press Ltd., Oxford (1969)

    Google Scholar 

  34. Krajcinovic, D.: J. Appl. Mech. 39(3), 773 (1972). https://doi.org/10.1115/1.3422787

    Article  ADS  Google Scholar 

  35. Ghugal, Y.M., Shimpi, R.P.: J. Reinf. Plast. Compos. 20(3), 255 (2001). https://doi.org/10.1177/073168401772678283

    Article  ADS  Google Scholar 

  36. Tessler, A., Sciuva, M.D., Gherlone, M.: J. Compos. Mater. 43(9), 1051 (2009). https://doi.org/10.1177/0021998308097730

    Article  ADS  Google Scholar 

  37. Tonelli, D., Bardella, L., Minelli, M.: J. Sandw. Struct. Mater. 14(6), 629 (2012). https://doi.org/10.1177/1099636212444656

    Article  Google Scholar 

  38. Frostig, Y., Baruch, M., Vilnay, O., Sheinman, I.: J. Eng. Mech. 118(5), 1026 (1992). https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)

    Article  Google Scholar 

  39. Mattei, O., Bardella, L.: Eur. J. Mech. A, Solids 58, 172 (2016). https://doi.org/10.1016/j.euromechsol.2016.01.015

    Article  ADS  MathSciNet  Google Scholar 

  40. Panteghini, A., Bardella, L.: Eur. J. Mech. A, Solids 61, 393 (2017). https://doi.org/10.1016/j.euromechsol.2016.10.012

    Article  ADS  MathSciNet  Google Scholar 

  41. Lee, S., Park, H.C., Kim, K.J.: Smart Mater. Struct. 14(6), 1363 (2005). https://doi.org/10.1088/0964-1726/14/6/028

    Article  ADS  Google Scholar 

  42. Bardella, L.: J. Mech. Mater. Struct. 3(7), 1187 (2008). https://doi.org/10.2140/jomms.2008.3.1187

    Article  Google Scholar 

  43. Phan, C.N., Frostig, Y., Kardomateas, G.A.: J. Appl. Mech. 79(4), 041001 (2012). https://doi.org/10.1115/1.4005550

    Article  ADS  Google Scholar 

  44. Leronni, A., Bardella, L.: Eur. J. Mech. A, Solids 77, 103750 (2019). https://doi.org/10.1016/j.euromechsol.2019.02.016

    Article  ADS  MathSciNet  Google Scholar 

  45. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  46. Bauchau, O.A., Craig, J.I.: Structural Analysis - with Applications to Aerospace Structures. Springer, Berlin (2009). https://doi.org/10.1007/978-90-481-2516-6

    Book  Google Scholar 

  47. Pagano, N.J.: J. Compos. Mater. 4(1), 20 (1970). https://doi.org/10.1177/002199837000400102

    Article  ADS  Google Scholar 

  48. Akle, B.J., Leo, D.J.: J. Intell. Mater. Syst. Struct. 19(8), 905 (2008). https://doi.org/10.1177/1045389X07082441

    Article  Google Scholar 

  49. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  50. Bard, A.J., Faulkner, L.R.: Electrochemical Methods - Fundamentals and Applications. John Wiley & Sons, New York (2001)

    Google Scholar 

  51. Kim, H., Cha, Y., Porfiri, M.: J. Intell. Mater. Syst. Struct. 27(17), 2426–2430 (2016). https://doi.org/10.1177/1045389X15620045

    Article  Google Scholar 

  52. Porfiri, M.: Phys. Rev. E 79, 041503 (2009). https://doi.org/10.1103/PhysRevE.79.041503

    Article  ADS  Google Scholar 

  53. Aureli, M., Lin, W., Porfiri, M.: J. Appl. Phys. 105(10), 104911 (2009). https://doi.org/10.1063/1.3129503

    Article  ADS  Google Scholar 

  54. Cha, Y., Aureli, M., Porfiri, M.: J. Appl. Phys. 111(12), 124901 (2012). https://doi.org/10.1063/1.4729051

    Article  ADS  Google Scholar 

  55. Bazant, M.Z., Thornton, K., Ajdari, A.: Phys. Rev. E 70, 021506 (2004). https://doi.org/10.1103/PhysRevE.70.021506

    Article  ADS  Google Scholar 

  56. Timoshenko, S., Goodier, J.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

  57. Meirovitch, L.: Fundamentals of Vibrations, International Edn. McGraw-Hill, New York (2001)

    Google Scholar 

  58. Silberstein, M.N., Boyce, M.C.: J. Power Sources 195(17), 5692 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.047

    Article  ADS  Google Scholar 

  59. Cardarelli, F.: Materials Handbook, 3rd edn. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-38925-7

    Book  Google Scholar 

  60. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.I.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. Wiley, New York (2014)

    MATH  Google Scholar 

  61. Dyke, P.: An Introduction to Laplace Transforms and Fourier Series, 2nd edn. Springer, London (2014)

    Book  MATH  Google Scholar 

  62. Batra, R.C., Liang, X.Q.: Comput. Mech. 20(5), 427 (1997). https://doi.org/10.1007/s004660050263

    Article  Google Scholar 

  63. Matsunaga, H.: Compos. Struct. 55(1), 105 (2002). https://doi.org/10.1016/S0263-8223(01)00134-9

    Article  ADS  Google Scholar 

  64. Jourawski, D.: Ann. Ponts Chaussées 12, 328 (1856)

    Google Scholar 

  65. Forest, S., Sab, K.: Mech. Res. Commun. 40, 16 (2012). https://doi.org/10.1016/j.mechrescom.2011.12.002

    Article  Google Scholar 

  66. Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS. CRC Press, Boca Raton (2002)

    Book  MATH  Google Scholar 

  67. Shen, Q., Palmre, V., Stalbaum, T., Kim, K.J.: J. Appl. Phys. 118(12), 124904 (2015). https://doi.org/10.1063/1.4931912

    Article  ADS  Google Scholar 

  68. Quarteroni, A.: Numerical Models for Differential Problems, 2nd edn. Springer, Berlin (2014). https://doi.org/10.1007/978-88-470-5522-3

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation under Grant No. OISE-1545857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Porfiri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Electrochemistry

Appendix A: Electrochemistry

Here, we put forward several hypotheses that allow us to compute a semi-analytical solution for the electrochemistry through the thickness, independently of the mechanical deformation. From the knowledge of the profiles of counterions’ concentration and voltage, we can evaluate the eigenstress related to osmotic pressure in Eq. (9) and Maxwell stress in Eq. (10).

We consider a Saint-Venant solution, whereby we neglect edge effects so that the variations of the electrochemical variables along the IPMC axis and width are negligible compared to their through-the-thickness variations [29, 66]. Specifically, we suppose that the counterions’ concentration and voltage depend only on the through-the-thickness coordinate \(Y\), such that \(C = C(Y,t)\) and \(\psi = \psi (Y,t)\), respectively.

Under these assumptions, the electrochemistry is described by a 1D system of two PDEs, commonly known as Poisson-Nernst-Planck (PNP) system [1719, 50, 67]. The first equation is derived from mass conservation of the counterions in Eq. (2),

$$ \frac{\partial C(Y,t)}{\partial t} + \frac{\partial J_{Y}(Y,t)}{\partial Y} = 0, $$
(74)

where \(J_{Y}\) indicates the counterions’ flux through the thickness of the IPMC, obtained from Eqs. (13) and (12) as

$$ J_{Y}(Y,t) = -\mathscr {D}\left (\frac{\partial C(Y,t)}{\partial Y} + \frac{\mathscr {D}C(Y,t)}{\mathscr {RT}} \frac{\partial \psi (Y,t)}{\partial Y}\right ). $$
(75)

The second equation is the 1D Gauss law, derived from Eq. (3) as

$$ \frac{\partial D(Y,t)}{\partial Y} = \mathscr {F}(C(Y,t)-C_{0}), $$
(76)

where \(D\) indicates the through-the-thickness electric displacement, which from Eq. (11) reads

$$ D(Y,t) = -\epsilon \frac{\partial \psi (Y,t)}{\partial Y}. $$
(77)

Substituting the constitutive relations in Eqs. (75), (77) in the PDEs in Eqs. (74), (76) and assuming that material properties are homogeneous in the ionomer, we obtain the PNP system

$$\begin{aligned} &\frac{\partial C(Y,t)}{\partial t} = \mathscr {D} \frac{\partial }{\partial Y}\left (\frac{\partial C(Y,t)}{\partial Y} + \frac{\mathscr {F}C(Y,t)}{\mathscr {RT}} \frac{\partial \psi (Y,t)}{\partial Y}\right ), \end{aligned}$$
(78a)
$$\begin{aligned} &-\epsilon \frac{\partial ^{2} \psi (Y,t)}{\partial Y^{2}} = \mathscr {F}(C(Y,t)-C_{0}), \end{aligned}$$
(78b)

which should be complemented by appropriate boundary conditions at the interface with the electrodes and initial conditions. Consistent with hypotheses in Sect. 2.1, we consider ion-blocking conditions at the ionomer-electrode interfaces,

$$ J(-h,t) = J(h,t) = 0, $$
(79)

and we assume that there is no drop of the external voltage \(\bar{V}(t)\) across the electrodes, such that

$$\begin{aligned} \psi (-h,t) &= -\frac{\bar{V}(t)}{2}, \end{aligned}$$
(80a)
$$\begin{aligned} \psi (h,t) &= \frac{\bar{V}(t)}{2}. \end{aligned}$$
(80b)

Furthermore, we consider the IPMC to be initially electroneutral, that is,

$$\begin{aligned} C(Y,0) &= C_{0}, \end{aligned}$$
(81a)
$$\begin{aligned} \psi (Y,0) &= 0. \end{aligned}$$
(81b)

The system of PDEs in Eq. (78a), (78b) with boundary and initial conditions in Eqs. (79), (80a), (80b), and (81a), (81b), represents a singularly perturbed BVP [17], due to the small value of the dielectric constant multiplying the highest order derivative in the Poisson equation in Eq. (78b). In fact, should one neglect this term, it would not be possible to satisfy both boundary conditions in Eq. (80a), (80b). In this family of differential problems, boundary layers typically develop at the boundaries of the domain, challenging the application of standard numerical techniques based on the discretization of the domain, such as finite differences or FE methods [68].

The need to accurately resolve boundary layers to ensure a precise quantification of the eigenstress, along with the limitations on the aspect ratio of the elements to guarantee stability of the numerical scheme, require the use of fine meshes that drastically increase the computational burden. Specifically, the thickness of boundary layers is of the order of the so-called Debye screening length [50], which is given by

$$ \lambda = \frac{1}{\mathscr {F}}\sqrt{ \frac{\epsilon \mathscr {RT}}{C_{0}}}. $$
(82)

For common ionomers, the Debye screening length is a few Angstrom [17], thereby hindering the feasibility of numerical simulations on millimeter- and centimeter-sized domains and calling for alternative methods to solve the problem, such as the one proposed in this paper.

Singularly perturbed problems can be solved analytically with the method of matched asymptotic expansions [32]. Specifically, we divide our computational domain into three subdomains: an “outer” region in the bulk of the ionomer, and two “inner” subdomains near the interfaces with electrodes, where we define a magnified spatial coordinate to describe the formation of boundary layers. In each of these three subdomains, we expand each variable in a power series of \(\delta = \lambda /h\) quantifying the ratio of the Debye screening length and the semi-thickness of the ionomer. By considering different orders, we obtain a series of simpler systems of PDEs in each subdomain, coupled through matching conditions in the overlapping region between inner and outer subdomains, where both PDE systems should be valid. A composite solution, valid in the entire computational domain, can be assembled by summing the solutions for each subdomain and subtracting their value in the overlapping regions. A detailed solution of this mathematical problem is presented in [17].

The matched asymptotic expansion reveals that IPMC electrochemistry is determined by the solution of an \(RC\) circuit, excited by the voltage \(\bar{V}(t)\) applied across the electrodes [17]. The conductivity per unit area of the resistor is given by [17]

$$ \varsigma = \frac{\mathscr {D}C_{0}\mathscr {F}^{2}}{2h\mathscr {RT}}, $$
(83)

while the nonlinear constitutive behavior of the capacitor, representing the charge stored in the boundary layers, is described by [17]

$$ q_{\mathrm{S}}(t) = \sqrt{\epsilon \mathscr {RT}C_{0}}\vartheta \left ( \frac{V(t)}{V_{\mathrm{th}}}\right ), $$
(84)

where \(q_{\mathrm{S}}\) is the charge stored per unit surface of electrodes, \(V(t)\) is the voltage drop across the capacitor, and

$$ \vartheta (\alpha ) = \sqrt{2}\sqrt{ \frac{\alpha }{\mathrm{exp}(\alpha )-1}-\ln \frac{\alpha }{\mathrm{exp}(\alpha )-1}-1}. $$
(85)

The circuit can be solved by applying Kirchhoff law, such that

$$ \bar{V}(t) = V(t) + \frac{i(t)}{\varsigma }, $$
(86)

where \(i(t) = \mathrm{d}q_{\mathrm{S}}(t)/\mathrm{d}t\) is the current through the circuit.

From the solution of the ODE of the circuit in Eq. (86), with initially discharged capacitor (\(V(0)=0\)), we obtain the time evolution of the voltage drop across the capacitor \(\alpha (t) = V(t)/V_{\mathrm{th}}\), which completely defines the first order composite solution through the thickness as [17]

$$ C(Y,\alpha (t)) = C_{0}\left [-1+\exp \left (y^{+}\left ( \frac{1-\frac{Y}{h}}{\delta },\alpha (t)\right )\right )+\exp \left (y^{-} \left (\frac{1+\frac{Y}{h}}{\delta },\alpha (t)\right )\right ) \right ], $$
(87a)
$$ \begin{aligned} \psi (Y,\alpha (t)) &= \frac{\bar{V}(t)}{2} + \frac{i(t)}{2\varsigma } \left (\frac{Y}{h}-1\right )\\&+ V_{\mathrm{th}}\left [\ln \left ( \frac{\alpha (t)}{\exp \left (\alpha (t)\right )-1}\right )-y^{+} \left (\frac{1-\frac{Y}{h}}{\delta },\alpha (t)\right )-y^{-}\left ( \frac{1+\frac{Y}{h}}{\delta },\alpha (t)\right )\right ], \end{aligned} $$
(87b)

where \(y^{\pm }(\xi ^{\pm })\) are functions of the magnified variables \(\xi ^{\pm }=(1\mp Y)/\delta \) near the electrodes, describing the formation and development of boundary layers. These functions are obtained by solving the following second order differential problems [17]:

$$\begin{aligned} \frac{\partial ^{2} y^{\pm }(\xi ^{\pm },\alpha )}{(\partial \xi ^{\pm })^{2}} &= \exp (y^{\pm }(\xi ^{\pm },\alpha )) - 1, \end{aligned}$$
(88a)
$$\begin{aligned} y^{+}(0,\alpha ) &= \ln \frac{\alpha }{\exp (\alpha )-1}, \end{aligned}$$
(88b)
$$\begin{aligned} y^{-}(0,\alpha ) &= \ln \frac{\alpha }{\exp (\alpha )-1}+\alpha , \end{aligned}$$
(88c)
$$\begin{aligned} \frac{\partial y^{\pm }(0,\alpha )}{\partial \xi ^{\pm }} &= \pm \vartheta (\alpha ). \end{aligned}$$
(88d)

In summary, from the solution of the circuit model we compute the voltage across the capacitor, where Eq. (86) is used, and counterions’ concentration and voltage profiles through the thickness are obtained with Eqs. (87a), (87b) and (88a)–(88d). Since these problems are independent of the deformation, the distribution of the electrochemical variables over time can be found once for all and then used to compute the eigenstress in the IPMC according to Eqs. (9) and (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boldini, A., Bardella, L. & Porfiri, M. On Structural Theories for Ionic Polymer Metal Composites: Balancing Between Accuracy and Simplicity. J Elast 141, 227–272 (2020). https://doi.org/10.1007/s10659-020-09779-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-020-09779-4

Keywords

Mathematics Subject Classification

Navigation