Skip to main content
Log in

Objective Symmetrically Physical Strain Tensors, Conjugate Stress Tensors, and Hill’s Linear Isotropic Hyperelastic Material Models

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We introduce a new family of strain tensors—a family of symmetrically physical (SP) strain tensors—which is also a subfamily of the well-known Hill family of strain tensors. For the further analysis, five scale functions are chosen which generate strain tensors belonging to the families of strain tensors previously introduced by other authors (i.e., the Doyle–Ericksen, Curnier–Rakotomanana, Curnier–Zysset, Itskov, and Darijani–Naghdabadi families) and to the new family of SP strain tensors. In particular, these five scale functions include the scale function generating the Lagrangian and Eulerian Hencky strain tensors. We introduce the family of SPH models of isotropic hyperelastic materials (with Hill’s linear relations) which are generated by SP strain tensors and work-conjugate stress tensors based on Hill’s natural generalization of Hooke’s law. Five SPH models of isotropic hyperelastic materials are generated on the basis of chosen SP strain tensors and work-conjugate stress tensors. These models are tested by solving two problems with homogeneous strain and stress tensors fields: the simple elongation and simple shear problems. Analysis of these solutions shows that the solutions of both problems for the Hencky isotropic hyperelastic material model (one of the five generated SPH models of isotropic hyperelastic materials) are qualitatively different from the solutions for the remaining four material models. That is, the solutions using the Hencky isotropic hyperelastic material model are of yielding nature typical of inelastic deformation of metals whereas the solutions for the other four material models reproduce strain diagrams typical of rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Hooke’s law using Cauchy stress and strain tensors cannot be directly used in large strains mechanics because of the non-objectivity of the Cauchy strain tensor [31].

  2. In the cited papers, an anomalous behavior of the solutions of problems using the St. Venant–Kirchhoff isotropic hyperelastic material model at large strains is noted.

  3. The rotated Kirchhoff stress tensor and the right logarithmic (Hencky) strain tensor are used in the Lagrangian version of the constitutive relations of the Hencky material model, and the Kirchhoff stress tensor and the left logarithmic (Hencky) strain tensor are used in the Eulerian version of the constitutive relations of this material model.

  4. Hereinafter, \(\mathcal{T}^{2}_{\text{sym}}\subset\mathcal{T}^{2}\) denotes the set of all symmetric second-order tensors.

  5. Hereinafter, \(m\) is the eigenindex, \(\lambda_{i}>0\) are eigenvalues, and \(\mathbf{U}_{i}\) and \(\mathbf{V}_{i}\) (\(i=1,\ldots m\)) are subordinate eigenprojections (see, e.g., [11, 17, 34, 54, 69]) of the tensors \(\mathbf{U}\) and \(\mathbf{V}\), respectively.

  6. Some authors call this family of strain tensors the Seth–Hill family of strain tensors (see, e.g., [20]).

  7. In [20], this family is termed the rubber family.

  8. \(\mathbf{D}\in\mathcal{T}^{2}_{\text{sym}}\) is the Lagrangian rotated stretching or rotated strain rate tensor (see, e.g., [20]).

  9. \(\mathbf{d}\in\mathcal{T}^{2}_{\text{sym}}\) is the Eulerian stretching or strain rate tensor (see, e.g., [73]). The rotated stretching tensor \(\mathbf{D}\) is the Lagrangian counterpart of the stretching tensor \(\mathbf{d}\), i.e., \(\mathbf{D}=\mathbf{R}^{T}\cdot\mathbf{d} \cdot\mathbf{R}\).

  10. \(\bar{ \boldsymbol{\tau}}\in\mathcal{T}^{2}_{\text{sym}}\) is the Lagrangian rotated Kirchhoff (or Noll) stress tensor (see, e.g., [20]).

  11. \(\boldsymbol{\tau}\in\mathcal{T}^{2}_{\text{sym}}\) is the Eulerian Kirchhoff stress tensor (see, e.g., [41, 61]). The rotated Kirchhoff stress tensor \(\bar{\boldsymbol{\tau}}\) is the Lagrangian counterpart of the Kirchhoff stress tensor \(\boldsymbol{\tau}\), i.e., \(\bar{ \boldsymbol{\tau}}=\mathbf{R}^{T}\cdot\boldsymbol{\tau} \cdot \mathbf{R}\).

  12. Strain tensors in the pairs \((\mathbf{S}, \mathbf{E})\) and \((\mathbf{s},\mathbf{e})\) belong to the Hill family.

  13. Often the tensor \(\mathbf{P}^{T}\) is called the nominal stress tensor (see, e.g., [61]).

  14. Hereinafter, \(\sigma_{ij}\) (\(i,j=1,2,3\)) are the Cauchy stress tensor \(\boldsymbol{\sigma}\) components in the introduced coordinate system.

  15. In the literature on linear elasticity theory, the material parameters \(E\) and \(\nu\) are called Young’s modulus and Poisson’s ratio.

  16. The ranges of admissible values in (67) are obtained the from constitutive inequalities applied to the values of the parameters \(\lambda\) and \(\mu\) (\(\mu>0\), \(3\lambda+ 2\mu>0\), see, e.g., [6]) taking into account the equalities (56) and the standard assumption \(E>0\).

  17. The principal directions in the simple shear problem are determined, e.g., in [34].

  18. In the solution of this problem based on linear elasticity theory, the length of the axis of a rod of an isotropic material does not change.

  19. For homogeneous deformation of a prismatic bar, equality (85) in fact reduces to the Considère (1888) condition for the instability of the deformation of a prismatic bar when the axial load on this bar reaches an extreme value (cf., [6], p. 166).

References

  1. Adamov, A.A.: Comparative analysis of the two-constant generalizations of Hooke’s law for isotropic elastic materials at finite strains. J. Appl. Mech. Tech. Phys. 42(5), 890–897 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Anand, L.: On Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46(1), 78–82 (1979)

    Article  ADS  MATH  Google Scholar 

  3. Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  ADS  Google Scholar 

  4. Batra, R.C.: Linear constitutive relations in isotropic finite elasticity. J. Elast. 51, 243–245 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Batra, R.C.: Elements of Continuum Mechanics. AIAA, Reston (2006)

    Book  MATH  Google Scholar 

  7. Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20–22), 2887–2897 (1996)

    Article  MATH  Google Scholar 

  8. Bažant, Z.P.: Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate. J. Eng. Mater. Technol. 120, 131–136 (1998)

    Article  Google Scholar 

  9. Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987)

    Article  ADS  Google Scholar 

  10. Bertram, A., Böhlke, T., Šilhavý, M.: On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elast. 86, 235–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  12. Billington, E.W.: Constitutive equation for a class of isotropic, perfectly elastic solids using a new measure of finite strain and corresponding stress. J. Eng. Math. 45, 117–134 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  14. de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012)

    Book  MATH  Google Scholar 

  15. Bruhns, O.T., Meyers, A., Xiao, H.: Hencky’s elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods. Arch. Mech. 52(4–5), 489–509 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Bruhns, O.T., Xiao, H., Meyers, A.: Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207–2226 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chernykh, K.Ph.: Nonlinear Theory of Elasticity in Engineering Analysis. Mashinostroenie, Leningrad (1986) (in Russian)

    Google Scholar 

  18. Chiskis, A., Parners, R.: Linear stress-strain relations in nonlinear elasticity. Acta Mech. 146, 109–113 (2001)

    Article  MATH  Google Scholar 

  19. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures, vol. 2. Advanced Topics. Wiley, Chichester (1997)

    MATH  Google Scholar 

  20. Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991)

    MathSciNet  Google Scholar 

  21. Curnier, A.: Computational Methods in Solid Mechanics. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  22. Curnier, A., Zysset, Ph.: A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations. Int. J. Solids Struct. 43, 3057–3086 (2006)

    Article  MATH  Google Scholar 

  23. Darijani, H., Naghdabadi, R., Kargarnovin, M.H.: Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 224, 591–602 (2010)

    Article  Google Scholar 

  24. Darijani, H., Naghdabadi, R.: Constitutive modeling of solids at finite deformation using a second-order stress-strain relation. Int. J. Eng. Sci. 48, 223–236 (2010)

    Article  Google Scholar 

  25. Darijani, H., Naghdabadi, R.: Kinematics and kinetics modeling of thermoelastic continua based on the multiplicative decomposition of the deformation gradient. Int. J. Eng. Sci. 62, 56–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Darijani, H.: Conjugated kinetic and kinematic measures for constitutive modeling of the thermoelastic continua. Contin. Mech. Thermodyn. 27, 987–1008 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Dluzewski, P.: Anisotropic hyperelasticity based upon general strain measures. J. Elast. 60, 119–129 (2000)

    Article  MATH  Google Scholar 

  28. Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. In: Dryden, H.L., von Karman, Th. (eds.) Advances in Applied Mechanics, vol. 4, pp. 53–115. Academic Press, New York (1956)

    Google Scholar 

  29. Farahani, K., Bahai, H.: Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth–Hill strain measures. Int. J. Eng. Sci. 42, 29–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fitzgerald, J.E.: A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 51(10), 5111–5115 (1980)

    Article  ADS  Google Scholar 

  31. Fosdick, R.L., Serrin, J.: On the impossibility of linear Cauchy and Piola–Kirchhoff constitutive theories tor stress in solids. J. Elast. 9(1), 83–89 (1979)

    Article  MATH  Google Scholar 

  32. Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012)

    Article  ADS  Google Scholar 

  33. Hackett, R.M.: Hyperelasticity Primer. Springer, Heidelberg (2016)

    Book  Google Scholar 

  34. Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013)

    Google Scholar 

  35. Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  36. Hencky, H.: The elastic behaviour of vulcanized rubber. J. Appl. Mech. 1(2), 45–53 (1933)

    Google Scholar 

  37. Hencky, H.: The elastic behaviour of vulcanized rubber. Rubber Chem. Technol. 6(2), 217–224 (1933)

    Article  Google Scholar 

  38. Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5(4), 229–241 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7(3), 209–225 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Hill, R.: On constitutive inequalities for simple materials—I. J. Mech. Phys. Solids 16(4), 229–242 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978)

    Google Scholar 

  42. Hoger, A.: The stress conjugate to logarithmic strain. Int. J. Solids Struct. 23(12), 1645–1658 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  44. Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain-energy density to model the large deformations of slightly compressible solid rubbers. Mech. Mater. 41, 943–950 (2009)

    Article  Google Scholar 

  45. Itskov, M.: On the application of the additive decomposition of generalized strain measures in large strain plasticity. Mech. Res. Commun. 25(1), 59–67 (1998)

    Article  Google Scholar 

  46. Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 4th edn. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  47. Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1–4), 301–332 (2011)

    Article  MATH  Google Scholar 

  49. Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Latorre, M., Montáns, F.J.: Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput. Struct. 122, 13–26 (2013)

    Article  Google Scholar 

  51. Latorre, M., Montáns, F.J.: What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity. Comput. Mech. 53, 1279–1298 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Latorre, M., Montáns, F.J.: On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int. J. Solids Struct. 51, 1507–1515 (2014)

    Article  Google Scholar 

  53. Liu, I.-S.: On the transformation property of the deformation gradient under a change of frame. J. Elast. 71, 73–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representation of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84, 243–246 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Lur’e, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    Google Scholar 

  56. Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001)

    Article  MATH  Google Scholar 

  57. Murdoch, A.I.: On objectivity and material symmetry for simple elastic solids. J. Elast. 60, 233–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  58. Murphy, J.G.: Linear isotropic relations in finite hyperelasticity: some general results. J. Elast. 86, 139–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Nader, J.J.: Linear response in finite elasticity. J. Elast. 73, 165–172 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  62. Panov, A.D., Shumaev, V.V.: Using the logarithmic strain measure for solving torsion problems. Mech. Solids 47(1), 71–78 (2012)

    Article  ADS  Google Scholar 

  63. Peyraut, F., Feng, Z.Q., He, Q.C., Labed, N.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59, 1499–1514 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Pietrzak, G.: Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems. PhD thesis, LMA, DGM, EPFL, Lausanne (1997)

  65. Plešek, J., Kruisova, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Comput. Struct. 84, 1141–1150 (2006)

    Article  Google Scholar 

  66. Poživilová, A.: Constitutive modeling of hyperelastic materials using the logarithmic description. PhD thesis, CTU, Prague (2002)

  67. Sansour, C.: On the dual variable of the logarithmic strain tensor, the dual of Cauchy stress tensor and related issues. Int. J. Solids Struct. 32(38), 9221–9232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  68. Sendova, T., Walton, J.R.: On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain. Int. J. Non-Linear Mech. 40, 195–213 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  70. de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008)

    Book  Google Scholar 

  71. Sussman, T., Bathe, K.-J.: A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun. Numer. Methods Eng. 25, 53–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/1, pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  73. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)

    Google Scholar 

  74. Volokh, K.Y.: Comments and authors’ reply on “Linear stress-strain relations in nonlinear elasticity” by A. Chiskis and R. Parners, (Acta Mech. 146, 109–113, 2001). Acta Mech. 171, 241–245 (2004)

    Article  Google Scholar 

  75. Wang, Z.Q., Wang, Y.: A natural generalization of linear isotropic relations with Seth–Hill strain tensors to transversely isotropic materials at finite strains. Math. Probl. Eng. 2016, 7473046 (2016)

    MathSciNet  MATH  Google Scholar 

  76. Xiao, H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. Int. J. Solids Struct. 32(22), 3327–3340 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  77. Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  78. Xiao, H., Bruhns, O.T., Meyers, A.: Hypo-elasticity model based upon the logarithmic stress rate. J. Elast. 47, 51–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  79. Xiao, H., Bruhns, O.T., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998)

    MathSciNet  MATH  Google Scholar 

  80. Xiao, H., Bruhns, O.T., Meyers, A.: Strain rates and material spins. J. Elast. 52, 1–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  81. Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  82. Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002)

    Article  MATH  Google Scholar 

  83. Xiao, H., Chen, L.S.: Hencky’s logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity. Int. J. Solids Struct. 40, 1455–1463 (2003)

    Article  MATH  Google Scholar 

  84. Xiao, H., Bruhns, O.T., Meyers, A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  85. Xiao, H., He, L.H.: A unified exact analysis for the Poynting effects of cylindrical tubes made of Hill’s class of Hookean compressible elastic materials at finite strain. Int. J. Solids Struct. 44, 718–731 (2007)

    Article  MATH  Google Scholar 

  86. Xiao, H., Yue, Z.F., He, L.H.: Hill’s class of compressible elastic materials and finite bending problems: exact solutions in unified form. Int. J. Solids Struct. 48, 1340–1348 (2011)

    Article  MATH  Google Scholar 

  87. Xiao, H.: Elastic potentials with best approximation to rubberlike elasticity. Acta Mech. 226, 331–350 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  88. Yuan, L., Gu, Z.X., Yin, Z.N., Xiao, H.: New compressible hyper-elastic models for rubberlike materials. Acta Mech. 226, 4059–4072 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The supports from the Russian Foundation for Basic Research (Grant No. 18-08-00358) and grant from Russian Federation Government No. P220-14.W03.31.0002 are gratefully acknowledged. The author thanks the anonymous reviewers whose comments and suggestions helped in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Korobeynikov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeynikov, S.N. Objective Symmetrically Physical Strain Tensors, Conjugate Stress Tensors, and Hill’s Linear Isotropic Hyperelastic Material Models. J Elast 136, 159–187 (2019). https://doi.org/10.1007/s10659-018-9699-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-018-9699-9

Keywords

Mathematics Subject Classification

Navigation