Skip to main content
Log in

Two-Dimensional Elastic Scattering Coefficients and Enhancement of Nearly Elastic Cloaking

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The concept of scattering coefficients has played a pivotal role in a broad range of inverse scattering and imaging problems in acoustic, and electromagnetic media. In view of their promising applications in inverse problems related to mathematical imaging and elastic cloaking, the notion of elastic scattering coefficients of an inclusion is presented from the perspective of boundary layer potentials and a few properties are discussed. A reconstruction algorithm is developed and analyzed for extracting the elastic scattering coefficients from multi-static response measurements of the scattered field in order to cater to inverse scattering problems. The decay rate, stability and error analyses, and the estimate of maximal resolving order in terms of the signal-to-noise ratio are discussed. Moreover, scattering-coefficients-vanishing structures are designed and their utility for enhancement of nearly elastic cloaking is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton Series in Applied Mathematics. Princeton University Press, NJ (2015)

    MATH  Google Scholar 

  2. Ammari, H., Calmon, P., Iakovleva, E.: Direct elastic imaging of a small inclusion. SIAM J. Imaging Sci. 1(2), 169–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammari, H., Chow, Y.T., Zou, J.: The concept of heterogeneous scattering coefficients and its application in inverse medium scattering. SIAM J. Math. Anal. 46(4), 2905–2935 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammari, H., Garnier, J., Jing, W., Kang, H., Lim, M., Solna, K., Wang, H.: Mathematical and Statistical Methods for Multistatic Imaging. Lecture Notes in Mathematics, vol. 2098. Springer, Cham (2013)

    MATH  Google Scholar 

  5. Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near-cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys. 317(1), 253–266 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near-cloaking. Part II: The Helmholtz equation. Commun. Math. Phys. 317(2), 485–502 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ammari, H., Kang, H., Lee, H., Lim, M., Yu, S.: Enhancement of near cloaking for the full Maxwell equations. SIAM J. Appl. Math. 73(6), 2055–2076 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ammari, H., Tran, M.P., Wang, H.: Shape identification and classification in echolocation. SIAM J. Imaging Sci. 7(3), 1883–1905 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, G., Liu, H.: Nearly cloaking the electromagnetic fields. SIAM J. Appl. Math. 74(3), 724–742 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao, G., Liu, H., Zou, J.: Nearly cloaking the full Maxwell equations: cloaking active contents with general conducting layers. J. Math. Pures Appl. 101(5), 716–733 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bates, R.H.T., Wall, D.J.N.: Null field approach to scalar diffraction I. General method. Philos. Trans. R. Soc. A 287(1339), 45–78 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin-New York (1976)

    Book  MATH  Google Scholar 

  13. Chen, H., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D, Appl. Phys. 43(11), 113001 (2010)

    Article  ADS  Google Scholar 

  14. Dahlberg, B.E., Kenig, C.E., Verchota, G.: Boundary value problem for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57(3), 795–818 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dassios, G., Kiriaki, K.: On the scattering amplitudes for elastic waves. Z. Angew. Math. Phys. 38(6), 856–873 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dassios, G., Kleinman, R.: Low Frequency Scattering. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  17. Diatta, A., Guenneau, S.: Controlling solid elastic waves with spherical cloaks. Appl. Phys. Lett. 105, 021901 (2014)

    Article  ADS  Google Scholar 

  18. Diatta, A., Guenneau, S.: Cloaking via change of variables in elastic impedance tomography (2013). arXiv:1306.4647

  19. Farhat, M., Guenneau, S., Enoch, S., Movchan, A.: Cloaking bending waves propagating in thin elastic plates. Phys. Rev. B 79, 033102 (2009)

    Article  ADS  Google Scholar 

  20. Ganesh, M., Hawkins, S.C.: A far-field based T-matrix method for two dimensional obstacle scattering. ANZIAM J. 50, C121–C136 (2010)

    MATH  Google Scholar 

  21. Ganesh, M., Hawkins, S.C.: Three dimensional electromagnetic scattering T-matrix computations. J. Comput. Appl. Math. 234(6), 1702–1709 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes and transformation optics. SIAM Rev. 51(1), 3–33 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Invisibility and inverse problems. Bull. AMS 46(1), 55–97 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24(2), 413–420 (2003)

    Article  Google Scholar 

  25. Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness for Calderón’s inverse problem. Math. Res. Lett. 10(5), 685–693 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, G., Liu, H.: Nearly cloaking the elastic wave fields. J. Math. Pures Appl. 104(6), 1045–1074 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publishing Company, Amsterdam-New York-Oxford (1979)

    Google Scholar 

  28. Leonhardt, U.: Optical conformal mapping. Science 312(5781), 1777–1780 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lim, M., Yu, S.: Reconstruction of the shape of an inclusion from elastic moment tensors. In: Mathematical and Statistical Methods for Imaging. Contemp. Math., vol. 548, pp. 61–76. Amer. Math. Soc., Providence, RI (2011)

    Chapter  Google Scholar 

  30. Martin, P.A.: On the connections between boundary integral equations and T-matrix methods. Eng. Anal. Bound. Elem. 27(7), 771–777 (2003)

    Article  MATH  Google Scholar 

  31. Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves and N Obstacles. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  32. Milton, G.W., Briane, M., Willis, J.R.: On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    Article  ADS  Google Scholar 

  33. Mishchenko, M.I., Videen, G., Babenko, V.A., Khlebtsov, N.G., Wriedt, T.: T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J. Quant. Spectrosc. Radiat. Transf. 88(1–3), 357–406 (2004)

    Google Scholar 

  34. Mishchenko, M.I., Videen, G., Babenko, V.A., Khlebtsov, N.G., Wriedt, T.: Comprehensive T-matrix reference database: a 2004–2006 update. J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 304–324 (2007)

    Article  ADS  Google Scholar 

  35. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vols. I and II. McGraw-Hill, NY (1953)

    MATH  Google Scholar 

  36. Nédélec, J.C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. App. Math. Sci., vol. 144. Springer, New York (2001)

    MATH  Google Scholar 

  37. Norris, A., Shuvalov, A.: Elastic cloaking theory. Wave Motion 48(6), 525–538 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  39. Ottaviani, E., Pierotti, D.: Reconstruction of scattering data by the optical theorem. In: Proc. IEEE Ultrasonics Symp, vol. 2, pp. 917–920. IEEE, Piscataway, NJ (1989). 1989

    Chapter  Google Scholar 

  40. Parnell, W.: Nonlinear pre-stress for cloaking from antiplane elastic waves. Proc. R. Soc. A 468(2138), 563–580 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Pendry, J., Schurig, D., Smith, D.: Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Sevroglou, V., Pelekanos, G.: Two-dimensional elastic Herglotz functions and their applications in inverse scattering. J. Elast. 68(1), 123–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Varadan, V.V., Lakhtakia, A., Varadan, V.K.: Comments on recent criticism of the T-matrix method. J. Acoust. Soc. Am. 84(6), 2280–2284 (1988)

    Article  ADS  Google Scholar 

  44. Varadan, V.K., Varadan, V.V. (eds.): Electromagnetic and Elastic Wave Scattering – Focus on the T-Matrix Approach. Pergamon Press Inc., Oxford (1980)

    Google Scholar 

  45. Varatharajulu, V.: Reciprocity relations and forward amplitude theorems for elastic waves. J. Math. Phys. 18(4), 537–543 (1977)

    Article  ADS  MATH  Google Scholar 

  46. Varatharajulu, V., Pao, Y.H.: Scattering matrix for elastic waves. I. Theory J. Acoust. Soc. Am. 60(3), 556–566 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Waterman, P.C.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53(8), 805–812 (1965)

    Article  Google Scholar 

  48. Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45(6), 1417–1429 (1969)

    Article  ADS  MATH  Google Scholar 

  49. Waterman, P.C.: Matrix theory of elastic wave scattering. J. Acoust. Soc. Am. 60(3), 567–580 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Wahab.

Additional information

This research was supported by the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea grant NRF-2015H1D3A1062400 (to A.W. through the Korea Research Fellowship Program), by the National Research Foundation of Korea under Grants NRF-2016R1A2B3008104 and NRF-2014R1A2A1A11052491 (A.W. and J.C.Y.), and R&D Convergence Program of National Research Council of Science and Technology of Korea grant no. CAP-13-3-KERI (to A.W. and J.C.Y.). The work of G.H. is partially supported by the NSFC grant no. 11671028 and the 1000-Talent Program of Young Scientists in China.

Appendices

Appendix A: Multipolar Expansion of Elastodynamic Fundamental Solution

Note that, by Helmholtz decomposition, \(\boldsymbol {\Gamma }^{\omega}({\mathbf {x}},{\mathbf{y}})\mathbf{p}\) can be decomposed for any constant vector \(\mathbf{p}\in \mathbb {R}^{2}\) and \({\mathbf{x}}\neq {\mathbf{y}}\) as (see, for instance, [1, 27])

$$\begin{aligned} \boldsymbol {\Gamma }^{\omega}({\mathbf{x}},{\mathbf{y}})\mathbf{p}= \nabla_{{\mathbf {x}}}G_{P} ({\mathbf{x}},{\mathbf{y}}) +\vec{ \nabla}_{\perp,{\mathbf {x}}}\times G_{S} ({\mathbf{x}},{\mathbf{y}}), \end{aligned}$$
(A.1)

with

$$G_{P}({\mathbf{x}},{\mathbf{y}}):=-\frac{1}{{\kappa }_{P}^{2}}\nabla_{{\mathbf {x}}} \cdot\bigl(\boldsymbol {\Gamma }^{\omega}({\mathbf{x}},{\mathbf{y}})\mathbf{p}\bigr) \quad\text{and} \quad G_{S}({\mathbf{x}},{\mathbf{y}}):=\frac{1}{{\kappa }_{S}^{2}} { \nabla}_{\perp ,{\mathbf{x}}}\times\bigl(\boldsymbol {\Gamma }^{\omega}({\mathbf{x}},{\mathbf{y}}) \mathbf{p}\bigr). $$

By (2.2), one can easily show that

$$\begin{aligned} & G_{P}({\mathbf{x}},{\mathbf{y}})=-\frac{1}{\rho_{0}\omega^{2}} \nabla _{{\mathbf{x}}}g({\mathbf{x}}-{\mathbf{y}},{\kappa }_{P})\cdot\mathbf{p} = \frac{1}{\rho_{0}\omega^{2}} \nabla_{{\mathbf{y}}}g({\mathbf{x}}-{\mathbf{y}},{\kappa }_{P}) \cdot\mathbf{p}, \end{aligned}$$
(A.2)
$$\begin{aligned} & G_{S}({\mathbf{x}},{\mathbf{y}})=-\frac{1}{\rho_{0}\omega^{2}} \vec{ \nabla }_{\perp,{\mathbf{x}}}\times g({\mathbf{x}}-{\mathbf{y}},{\kappa }_{S})\cdot \mathbf{p} =\frac{1}{\rho_{0}\omega^{2}} \vec{\nabla}_{\perp, {\mathbf{y}}}\times g({\mathbf{x}}- {\mathbf{y}},{\kappa }_{S})\cdot\mathbf{p}, \end{aligned}$$
(A.3)

where the reciprocity relations

$$g({\mathbf{x}}-{\mathbf{y}},{\kappa }_{\alpha})= g({\mathbf{y}}-{\mathbf{x}},{\kappa }_{\alpha}) \quad\text{and}\quad \nabla_{{\mathbf{x}}}g({\mathbf{x}}-{\mathbf{y}},{\kappa }_{\alpha})= -\nabla _{{\mathbf{y}}}g({\mathbf{x}}-{\mathbf{y}},{\kappa }_{\alpha}), $$

have been used. Recall that, by Graf’s addition formula (see, for example, [38, Formula 10.23.7]), we have

$$H_{0}^{(1)}({\kappa }|{\mathbf{x}}-{\mathbf{y}}|)=\sum _{n\in} H_{n}^{(1)}({\kappa }|{ \mathbf{x}}|)e^{in\theta_{{\mathbf{x}}}} \overline{J_{n}({\kappa }|{\mathbf{y}}|)e^{in\theta_{{\mathbf{y}}}}}. $$

Consequently, it follows from (A.2), (A.3), and (2.3) that

$$\begin{aligned} G_{P}({\mathbf{x}},{\mathbf{y}})&=\frac{i}{4\rho_{0}\omega^{2}}\sum _{n\in } H_{n}^{(1)}({\kappa }_{P}|{ \mathbf{x}}|)e^{in\theta_{{\mathbf{x}}}}\, \overline{\nabla\bigl[ J_{n}( {\kappa }_{P}|{\mathbf{y}}|)e^{in\theta_{{\mathbf{y}}}}\bigr]\cdot \mathbf{p}}, \\ G_{S}({\mathbf{x}},{\mathbf{y}})&=\frac{i}{4\rho_{0}\omega^{2}}\sum _{n\in } H_{n}^{(1)}({\kappa }_{S}|{ \mathbf{x}}|)e^{in\theta_{{\mathbf{x}}}} \overline{\vec{\nabla}_{\perp}\times\bigl[ J_{n}({\kappa }_{S}|{\mathbf{y}}|)e^{in\theta_{{\mathbf{y}}}}\bigr]\cdot \mathbf{p}}. \end{aligned}$$

The identity (3.11) follows by substituting the values of \(G_{\alpha}\) in the decomposition (A.1) and using the definition of \(\mathbf {J}^{\alpha}\) and \(\mathbf {H}^{\alpha}\).

Appendix B: Proof of Lemma 3.5

Proof

Since our formulation here is based on an integral representation in terms of the densities \({\boldsymbol{\varphi}}\) and \({\boldsymbol{\psi}}\) satisfying (2.8), we take a different route than those already discussed in [46, 49] without directly invoking the argument of reciprocity.

Let us first fix some notation. For any \({\mathbf{v}},{\mathbf{w}}\in H^{3/2}(D)^{2}\) and \(a,b\in \mathbb {R}_{+}\), define the quadratic form

$$\begin{aligned} \langle{\mathbf{v}},{\mathbf{w}}\rangle^{a,b}_{D}:= \int_{D} \biggl[ a(\nabla\cdot{\mathbf{v}}) (\nabla\cdot{ \mathbf{w}})+\frac {b}{2} \bigl( \nabla{\mathbf{v}}+\nabla{ \mathbf{v}}^{\top} \bigr) :\bigl(\nabla{\mathbf{w}}+\nabla{ \mathbf{w}}^{\top}\bigr) \biggr] d{\mathbf{x}}, \end{aligned}$$

where double dot ‘ : ’ denotes the matrix contraction operator defined for two matrices \(\mathbf{A}=(a_{ij})\) and \(\mathbf {B}=(b_{ij})\) by \(\mathbf{A}:\mathbf{B}:=\displaystyle \sum_{i,j}a_{ij}b_{ij}\). It is easy to get from the definition of \(\langle \cdot{,}\cdot\rangle^{a,b}_{D}\) that

$$\begin{aligned} \int_{\partial D}{\mathbf{v}}\cdot\frac{\partial{\mathbf {w}}}{\partial\nu}d\sigma({ \mathbf{x}})= \int_{D}{\mathbf{v}}\cdot \mathcal {L}_{a,b}[{\mathbf{w}}]d{ \mathbf{x}}+\langle{\mathbf{v}},{\mathbf {w}}\rangle^{a,b}_{D}. \end{aligned}$$
(B.1)

Note that if \({\mathbf{w}}\) is a solution of the Lamé equation \(\mathcal {L}_{a,b}[{\mathbf{w}}]+c\omega^{2}{\mathbf{w}}=\mathbf{0}\) then

$$\begin{aligned} \int_{\partial D}{\mathbf{v}}\cdot\frac{\partial{\mathbf {w}}}{\partial\nu}d\sigma({ \mathbf{x}})=-c \omega^{2} \int _{D}{\mathbf{v}}\cdot{\mathbf{w}}d{\mathbf{x}}+\langle{ \mathbf {v}},{\mathbf{w}}\rangle^{a,b}_{D}, \end{aligned}$$

and consequently from (B.1)

$$\begin{aligned} \int_{\partial D}{\mathbf{v}}\cdot\frac{\partial{\mathbf {w}}}{\partial\nu}d\sigma({ \mathbf{x}})= \int_{\partial D} \frac {\partial{\mathbf{v}}}{\partial\nu}\cdot{\mathbf{w}}d\sigma ({ \mathbf{x}})-c\omega^{2} \int_{D}{\mathbf{v}}\cdot{\mathbf {w}}d{\mathbf{x}}- \int_{D}\mathcal {L}_{a,b}[{\mathbf{v}}]\cdot{\mathbf {w}}d{ \mathbf{x}}. \end{aligned}$$
(B.2)

Moreover, if \({\mathbf{v}}\) solves \(\mathcal {L}_{a,b}[{\mathbf{v}}]+c\omega ^{2}{\mathbf{v}}=\mathbf{0}\) then

$$\begin{aligned} \int_{\partial D}{\mathbf{v}}\cdot\frac{\partial{\mathbf {w}}}{\partial\nu}d\sigma({ \mathbf{x}})= \int_{\partial D}\frac {\partial{\mathbf{v}}}{\partial\nu}\cdot{\mathbf{w}}d\sigma ({ \mathbf{x}}). \end{aligned}$$
(B.3)

We will also require the constants

$$\begin{aligned} \eta_{P}&:=\frac{\mu_{0}}{\mu_{1}-\mu_{0}}, \\ \widetilde{\eta}_{P}&:=\frac{\mu_{1}}{\mu_{1}-\mu_{0}}, \\ \eta_{S}&:=\frac{\lambda_{0}+\mu_{0}}{(\lambda_{1}-\lambda _{0})+(\mu_{1}-\mu_{0})}, \\ \widetilde{\eta}_{S}&:=\frac{\lambda_{1}+\mu_{1}}{(\lambda _{1}-\lambda_{0})+(\mu_{1}-\mu_{0})}. \end{aligned}$$

Let \(({\boldsymbol{\varphi}}_{n}^{\alpha}, {\boldsymbol{\psi}}_{n}^{\alpha})\) and \(({\boldsymbol{\varphi}}_{n}^{\beta}, {\boldsymbol{\psi}}_{m}^{\beta})\) be the solutions of (2.8) with \({\mathbf{u}}^{\mathrm{inc}}=\mathbf {J}^{\alpha}\) and \({\mathbf{u}}^{\mathrm{inc}}=\mathbf {J}^{\beta}\) respectively, i.e.

$$\begin{aligned} &\widetilde{\mathcal{S}}^{\omega}_{D}{\boldsymbol{\varphi}}_{n}^{\alpha}- \mathcal {S}^{\omega}_{D}{\boldsymbol{\psi}}_{n}^{\alpha} = \mathbf {J}^{\alpha}_{n} \big|_{\partial D}, \end{aligned}$$
(B.4)
$$\begin{aligned} &\frac{\partial}{\partial\widetilde{\nu}}\widetilde{\mathcal {S}}^{\omega}_{D} {\boldsymbol{\varphi}}_{n}^{\alpha} \bigg|_{-} -\frac{\partial}{\partial\nu} \mathcal{S}^{\omega}_{D}{\boldsymbol{\psi}}_{n}^{\alpha} \bigg|_{+} =\displaystyle \frac{\partial \mathbf {J}^{\alpha}_{n}}{\partial\nu} \bigg|_{\partial D}, \end{aligned}$$
(B.5)

and

$$\begin{aligned} &\widetilde{\mathcal{S}}^{\omega}_{D}{\boldsymbol{\varphi}}_{m}^{\beta}- \mathcal {S}^{\omega}_{D}{\boldsymbol{\psi}}_{m}^{\beta}= \mathbf {J}^{\beta}_{m} \big|_{\partial D}, \end{aligned}$$
(B.6)
$$\begin{aligned} &\frac{\partial}{\partial\widetilde{\nu}}\widetilde{\mathcal {S}}^{\omega}_{D} {\boldsymbol{\varphi}}_{m}^{\beta} \bigg|_{-} -\frac{\partial}{\partial\nu} \mathcal{S}^{\omega}_{D}{\boldsymbol{\psi}}_{m}^{\beta} \bigg|_{+}=\displaystyle \frac{\partial \mathbf {J}^{\beta}_{m}}{\partial \nu} \bigg|_{\partial D}. \end{aligned}$$
(B.7)

Then, by making use of the jump conditions (2.4), \(W^{\alpha ,\beta}_{m,n}\) can be expressed as

$$\begin{aligned} W^{\alpha,\beta}_{m,n}=\displaystyle \int_{\partial D}\overline{\mathbf {J}_{n}^{\alpha}}\cdot {\boldsymbol{\psi}}_{m}^{\beta} d\sigma({\mathbf{x}})= \int _{\partial D}\overline{\mathbf {J}_{n}^{\alpha}}\cdot \biggl[ \frac {\partial}{\partial\nu}\mathcal{S}^{\omega}_{D}\bigl[ {\boldsymbol{\psi}}^{\beta }_{m}\bigr] \big|_{+}-\frac{\partial}{\partial\nu} \mathcal{S}^{\omega }_{D}\bigl[{\boldsymbol{\psi}}^{\beta}_{m} \bigr] \big|_{-} \biggr] d\sigma({\mathbf{x}}). \end{aligned}$$

Further, by invoking (B.7) and subsequently using (B.2) and (B.3), one gets the expression

$$\begin{aligned} W^{\alpha,\beta}_{m,n}&=- \int_{\partial D}\overline{\mathbf {J}_{n}^{\alpha}}\cdot \frac{\partial \mathbf {J}^{\beta}_{m}}{\partial\nu }d\sigma({\mathbf{x}})+ \int_{\partial D}\overline{\mathbf {J}_{n}^{\alpha }}\cdot \biggl[ \frac{\partial}{\partial\widetilde{\nu}}\widetilde {\mathcal{S}}^{\omega}_{D} \bigl[{\boldsymbol{\varphi}}^{\beta}_{m}\bigr] \big|_{-} - \frac{\partial}{\partial\nu}\mathcal{S}^{\omega}_{D}\bigl[{\boldsymbol{\psi}}^{\beta}_{m}\bigr] \big|_{-} \biggr] d\sigma({ \mathbf{x}}) \\ &=- \int_{\partial D}\overline{\mathbf {J}_{n}^{\alpha}}\cdot \frac {\partial \mathbf {J}^{\beta}_{m}}{\partial\nu}d\sigma({\mathbf{x}})+ \int _{\partial D} \biggl[ \frac{\partial\overline{\mathbf {J}_{n}^{\alpha }}}{\partial\widetilde{\nu}}\cdot\widetilde{ \mathcal{S}}^{\omega }_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr] -\frac{\partial\overline{\mathbf {J}_{n}^{\alpha}}}{\partial\nu}\cdot \mathcal{S}^{\omega}_{D}\bigl[ {\boldsymbol{\psi}}^{\beta}_{m}\bigr] \biggr] d\sigma ({\mathbf{x}}) \\ &\quad{}-\rho_{1}\omega^{2} \int_{D}\overline{\mathbf {J}^{\alpha}_{n}}\cdot \widetilde{\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d{\mathbf {x}}- \int_{D}\mathcal {L}_{\lambda_{1},\mu_{1}}\bigl[\overline{ \mathbf {J}^{\alpha }_{n}}\bigr]\cdot\widetilde{\mathcal{S}}^{\omega}_{D} \bigl[{\boldsymbol{\varphi}}^{\beta }_{m}\bigr]d{\mathbf{x}}. \end{aligned}$$

This, together with (B.6), leads to

$$\begin{aligned} W^{\alpha,\beta}_{m,n}&=- \int_{\partial D}\overline{\mathbf {J}_{n}^{\alpha}}\cdot \frac{\partial \mathbf {J}^{\beta}_{m}}{\partial\nu }d\sigma({\mathbf{x}}) + \int_{\partial D}\frac{\partial\overline{\mathbf {J}_{n}^{\alpha }}}{\partial\widetilde{\nu}}\cdot\widetilde{ \mathcal{S}}^{\omega }_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr] d\sigma({\mathbf{x}}) - \int_{\partial D}\frac{\partial\overline{\mathbf {J}_{n}^{\alpha }}}{\partial\nu}\cdot\widetilde{ \mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d\sigma({\mathbf{x}}) \\ &\quad{}+ \int_{\partial D}\frac{\partial\overline{\mathbf {J}}_{n}^{\alpha }}{\partial\nu}\cdot \mathbf {J}_{m}^{\beta} \cdot d\sigma({\mathbf{x}}) -\rho_{1}\omega^{2} \int_{D}\overline{\mathbf {J}^{\alpha}_{n}}\cdot \widetilde{\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d{\mathbf {x}}- \int_{D}\mathcal {L}_{\lambda_{1},\mu_{1}}\bigl[\overline{ \mathbf {J}^{\alpha }_{n}}\bigr]\cdot\widetilde{\mathcal{S}}^{\omega}_{D} \bigl[{\boldsymbol{\varphi}}^{\beta }_{m}\bigr]d{\mathbf{x}}. \end{aligned}$$

It is easy to see that the first and the fourth terms cancel out each other thanks to (B.3). Therefore,

$$\begin{aligned} W^{\alpha,\beta}_{m,n}&= \int_{\partial D} \biggl[ \frac{\partial\overline{\mathbf {J}_{n}^{\alpha }}}{\partial\widetilde{\nu}}-\frac{\partial\overline{\mathbf {J}_{n}^{\alpha}}}{\partial\nu} \biggr] \cdot\widetilde{\mathcal {S}}^{\omega}_{D}\bigl[ {\boldsymbol{\varphi}}^{\beta}_{m}\bigr]d\sigma({\mathbf{x}})-\rho _{1} \omega^{2} \int_{D}\overline{\mathbf {J}^{\alpha}_{n}}\cdot \widetilde {\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d{\mathbf{x}} \\ &\quad{}- \int_{D}\mathcal {L}_{\lambda_{1},\mu_{1}}\bigl[\overline{ \mathbf {J}^{\alpha }_{n}}\bigr]\cdot\widetilde{\mathcal{S}}^{\omega}_{D} \bigl[{\boldsymbol{\varphi}}^{\beta }_{m}\bigr]d{\mathbf{x}}. \end{aligned}$$
(B.8)

Remark that \(\nabla\cdot \mathbf {J}^{S}_{n}=0=\nabla\times \mathbf {J}^{P}_{n}\). Therefore, it is easy to verify by definition of the surface traction operator that

$$\begin{aligned} \frac{\partial\overline{\mathbf {J}_{n}^{\alpha}}}{\partial\widetilde {\nu}}-\frac{\partial\overline{\mathbf {J}_{n}^{\alpha}}}{\partial\nu }=\frac{1}{\eta_{\alpha}}\frac{\partial\overline{\mathbf {J}_{n}^{\alpha }}}{\partial\nu} = \frac{1}{\widetilde{\eta}_{\alpha}}\frac {\partial\overline{\mathbf {J}_{n}^{\alpha}}}{\partial\widetilde{\nu }}. \end{aligned}$$
(B.9)

Thus, using right most quantity of (B.9) in (B.8) and subsequently invoking identity (B.2), one gets

$$\begin{aligned} \widetilde{\eta}_{\alpha} W^{\alpha,\beta}_{m,n} &= \int_{\partial D}\frac{\partial\overline{\mathbf {J}^{\alpha }_{n}}}{\partial\widetilde{\nu}}\cdot\widetilde{\mathcal {S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d\sigma({\mathbf {x}})-\widetilde{\eta}_{\alpha}\rho_{1} \omega^{2} \int _{D}\overline{\mathbf {J}^{\alpha}_{n}}\cdot \widetilde{\mathcal {S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d{\mathbf{x}} \\ &\quad{}-\widetilde{\eta}_{\alpha} \int_{D}\mathcal {L}_{\lambda_{1},\mu_{1}} \bigl[\overline{ \mathbf {J}^{\alpha}_{n}} \bigr]\cdot\widetilde{\mathcal {S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d{\mathbf{x}} \\ &= \int_{\partial D}\overline{\mathbf {J}^{\alpha}_{n}}\cdot \frac{\partial }{\partial\widetilde{\nu}}\widetilde{\mathcal{S}}^{\omega }_{D}\bigl[ {\boldsymbol{\varphi}}^{\beta}_{m}\bigr] \big|_{-}d\sigma({\mathbf{x}}) +(1-\widetilde{\eta}_{\alpha})\rho_{1}\omega^{2} \int_{D}\overline {\mathbf {J}^{\alpha}_{n}}\cdot \widetilde{\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m}\bigr]d{\mathbf{x}} \\ &\quad{}+(1-\widetilde{\eta}_{\alpha}) \int_{D}\mathcal {L}_{\lambda_{1},\mu_{1}} \bigl[\overline{ \mathbf {J}^{\alpha}_{n}}\bigr]\cdot\widetilde{\mathcal{S}}^{\omega }_{D} \bigl[{\boldsymbol{\varphi}}^{\beta}_{m}\bigr]d{\mathbf{x}}. \end{aligned}$$

This, together with (B.4) and (B.7), provides

$$\begin{aligned} \widetilde{\eta}_{\alpha} W^{\alpha,\beta}_{m,n} &= \int_{\partial D}\overline{\widetilde{\mathcal{S}}^{\omega }_{D} \bigl[{\boldsymbol{\varphi}}^{\alpha}_{n}\bigr]}\cdot\frac{\partial}{\partial\widetilde {\nu}} \widetilde{\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr] \big|_{-}d\sigma({\mathbf{x}}) - \int_{\partial D}\overline{\mathcal{S}^{\omega}_{D} \bigl[{\boldsymbol{\psi}}^{\alpha }_{n}\bigr]}\cdot\frac{\partial}{\partial\nu} \mathcal{S}^{\omega }_{D}\bigl[{\boldsymbol{\psi}}^{\beta}_{m} \bigr] \big|_{+}d\sigma({\mathbf{x}}) \\ &\quad{}- \int_{\partial D}\overline{\mathcal{S}_{D}^{\omega} \bigl[{\boldsymbol{\psi}}^{\alpha}_{n}\bigr]}\cdot\frac{\partial \mathbf {J}^{\beta}_{m}}{\partial\nu }d\sigma({ \mathbf{x}})+(1-\widetilde{\eta}_{\alpha})\rho _{1} \omega^{2} \int_{D}\overline{\mathbf {J}^{\alpha}_{n}}\cdot \widetilde {\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d{\mathbf{x}} \\ &\quad{}+(1-\widetilde{\eta}_{\alpha}) \int_{D}\mathcal {L}_{\lambda_{1},\mu _{1}}\bigl[\overline{ \mathbf {J}^{\alpha}_{n}}\bigr]\cdot\widetilde{\mathcal {S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d{\mathbf{x}}. \end{aligned}$$
(B.10)

Similarly, substituting the first relation of (B.9) back in (B.8) and invoking (B.6), one obtains

$$\begin{aligned} \eta_{\alpha} W^{\alpha,\beta}_{m,n}&= \int_{\partial D}\frac {\partial\overline{\mathbf {J}^{\alpha}_{n}}}{\partial\nu}\cdot \widetilde{ \mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr]d\sigma ({\mathbf{x}})-\eta_{\alpha}\rho_{1} \omega^{2} \int_{D}\overline {\mathbf {J}^{\alpha}_{n}}\cdot \widetilde{\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m}\bigr]d{\mathbf{x}} \\ &\quad{}-\eta_{\alpha} \int_{D}\mathcal {L}_{\lambda_{1},\mu_{1}}\bigl[\overline{\mathbf {J}^{\alpha}_{n}}\bigr]\cdot\widetilde{\mathcal{S}}^{\omega}_{D} \bigl[{\boldsymbol{\varphi}}^{\beta}_{m}\bigr]d{\mathbf{x}} \\ &= \int_{\partial D}\frac{\partial\overline{\mathbf {J}^{\alpha }_{n}}}{\partial\nu}\cdot\mathcal{S}^{\omega}_{D} \bigl[{\boldsymbol{\psi}}^{\beta }_{m}\bigr]d\sigma({\mathbf{x}})+ \int_{\partial D}\frac{\partial \overline{\mathbf {J}^{\alpha}_{n}}}{\partial\nu}\cdot \mathbf {J}^{\beta}_{m} d\sigma({\mathbf{x}}) \\ &\quad{}-\eta_{\alpha}\rho_{1}\omega^{2} \int_{D}\overline{\mathbf {J}^{\alpha }_{n}}\cdot \widetilde{\mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta }_{m} \bigr]d{\mathbf{x}} -\eta_{\alpha} \int_{D}\mathcal {L}_{\lambda_{1},\mu_{1}}\bigl[\overline{\mathbf {J}^{\alpha}_{n}}\bigr]\cdot\widetilde{\mathcal{S}}^{\omega}_{D} \bigl[{\boldsymbol{\varphi}}^{\beta}_{m}\bigr]d{\mathbf{x}}. \end{aligned}$$
(B.11)

Finally, subtracting (B.11) from (B.10) and noting that \(\widetilde{\eta}_{\alpha}-\eta_{\alpha}=1\), one finds out that

$$\begin{aligned} W^{\alpha,\beta}_{m,n}&= \int_{\partial D}\overline{\widetilde{\mathcal{S}}^{\omega}\bigl[ {\boldsymbol{\varphi}}^{\alpha}_{n}\bigr]}\cdot\frac{\partial}{\partial\widetilde{\nu }}\widetilde{ \mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\beta}_{m} \bigr] \big|_{-}d\sigma({\mathbf{x}}) - \int_{\partial D}\overline{\mathcal{S}^{\omega}_{D} \bigl[{\boldsymbol{\psi}}^{\alpha }_{n}\bigr]}\cdot\frac{\partial}{\partial\nu} \mathcal{S}^{\omega }_{D}\bigl[{\boldsymbol{\psi}}^{\beta}_{m} \bigr] \big|_{+}d\sigma({\mathbf{x}}) \\ &\quad{}- \int_{\partial D}\overline{\mathcal{S}_{D}^{\omega} \bigl[{\boldsymbol{\psi}}^{\alpha}_{n}\bigr]}\cdot\frac{\partial \mathbf {J}^{\beta}_{m}}{\partial\nu }d\sigma({ \mathbf{x}}) - \int_{\partial D}\frac{\partial\overline{\mathbf {J}^{\alpha }_{n}}}{\partial\nu}\cdot\mathcal{S}^{\omega}_{D} \bigl[{\boldsymbol{\psi}}^{\beta }_{m}\bigr]d\sigma({\mathbf{x}}) - \int_{\partial D}\frac{\partial\overline{\mathbf {J}^{\alpha }_{n}}}{\partial\nu}\cdot \mathbf {J}^{\beta}_{m} d\sigma({\mathbf{x}}). \end{aligned}$$
(B.12)

Similarly, we have

$$\begin{aligned} W^{\beta,\alpha}_{n,m}&= \int_{\partial D}\overline{\widetilde{\mathcal{S}}^{\omega}\bigl[ {\boldsymbol{\varphi}}^{\beta}_{m}\bigr]}\cdot\frac{\partial}{\partial\widetilde{\nu }}\widetilde{ \mathcal{S}}^{\omega}_{D}\bigl[{\boldsymbol{\varphi}}^{\alpha}_{n} \bigr] \big|_{-}d\sigma({\mathbf{x}}) - \int_{\partial D}\overline{\mathcal{S}^{\omega}_{D} \bigl[{\boldsymbol{\psi}}^{\beta }_{m}\bigr]}\cdot\frac{\partial}{\partial\nu} \mathcal{S}^{\omega }_{D}\bigl[{\boldsymbol{\psi}}^{\alpha}_{n} \bigr] \big|_{+}d\sigma({\mathbf{x}}) \\ &\quad{} - \int_{\partial D}\overline{\mathcal{S}_{D}^{\omega} \bigl[{\boldsymbol{\psi}}^{\beta }_{m}\bigr]}\cdot\frac{\partial \mathbf {J}^{\alpha}_{n}}{\partial\nu}d\sigma ({ \mathbf{x}}) - \int_{\partial D}\frac{\partial\overline{\mathbf {J}^{\beta }_{m}}}{\partial\nu}\cdot\mathcal{S}^{\omega}_{D} \bigl[{\boldsymbol{\psi}}^{\alpha }_{n}\bigr]d\sigma({\mathbf{x}}) - \int_{\partial D}\frac{\partial \overline{\mathbf {J}^{\beta}_{m}}}{\partial\nu}\cdot \mathbf {J}^{\alpha}_{n} d\sigma({\mathbf{x}}) \\ &= \int_{\partial D}\frac{\partial}{\partial\widetilde{\nu }}\overline{\widetilde{ \mathcal{S}}^{\omega}\bigl[{\boldsymbol{\varphi}}^{\beta }_{m}\bigr]} \big|_{-} \cdot\widetilde{\mathcal{S}}^{\omega}_{D} \bigl[{\boldsymbol{\varphi}}^{\alpha }_{n}\bigr]d\sigma({\mathbf{x}}) - \int_{\partial D}\frac{\partial}{\partial\nu}\overline{\mathcal {S}^{\omega}_{D}\bigl[{\boldsymbol{\psi}}^{\beta}_{m}\bigr]} \big|_{+}\cdot\mathcal {S}^{\omega}_{D}\bigl[ {\boldsymbol{\psi}}^{\alpha}_{n}\bigr]d\sigma({\mathbf{x}}) \\ &\quad{} - \int_{\partial D}\overline{\mathcal{S}_{D}^{\omega} \bigl[{\boldsymbol{\psi}}^{\beta }_{m}\bigr]}\cdot\frac{\partial \mathbf {J}^{\alpha}_{n}}{\partial\nu}d\sigma ({ \mathbf{x}}) - \int_{\partial D}\frac{\partial\overline{\mathbf {J}^{\beta }_{m}}}{\partial\nu}\cdot\mathcal{S}^{\omega}_{D} \bigl[{\boldsymbol{\psi}}^{\alpha }_{n}\bigr]d\sigma({\mathbf{x}}) - \int_{\partial D}\overline{\mathbf {J}^{\beta}_{m}} \cdot \frac{\partial \mathbf {J}^{\alpha}_{n}}{\partial\nu}d\sigma({\mathbf{x}}). \end{aligned}$$
(B.13)

The proof is completed by taking complex conjugate of expression (B.13) and comparing the result with equation (B.12). □

Appendix C: Proof of Theorem 3.7

In order to prove identity (3.23), we follow the approach taken by [46]. Since \(\mathbf{W}_{\infty}\) is independent of the choice of incident field, we consider the case when the plane waves

$${\mathbf{u}}^{\mathrm{inc}}_{P}({\mathbf{x}}):= \nabla e^{i{\kappa }_{P} {\mathbf {x}}\cdot {\mathbf{d}}} \quad \text{and}\quad {\mathbf{u}}^{\mathrm{inc}}_{S}({\mathbf{x}}):= \vec{ \nabla}_{\perp}\times e^{i{\kappa }_{S} {\mathbf{x}}\cdot {\mathbf{d}}}, $$

are incident simultaneously and use the superposition principle for the optical theorem thanks to the linearity of the RHS of identity (3.22). Note that the coefficients \(a^{\alpha}_{m} ({\mathbf{u}}^{\mathrm{inc}}_{\alpha})\) and \(\gamma^{\alpha }_{n}\) in this case are given by

$$\begin{aligned} a^{\alpha}_{m}\bigl({\mathbf{u}}^{\mathrm{inc}}\bigr)= e^{im(\pi/2-\theta_{{\mathbf{d}}})} \quad\text{and}\quad \gamma^{\alpha}_{n}= \frac{i}{4\rho_{0}\omega^{2}}\sum _{m\in \mathbb {Z}} \bigl[ a^{P}_{m} W^{\alpha,P}_{m,n}+a^{S}_{m} W^{\alpha ,S}_{m,n} \bigr] . \end{aligned}$$

To facilitate ensuing discussion, let us define

$$\mathbf{A}:= \begin{pmatrix} \mathbf{A}_{P}\\\mathbf{A}_{S} \end{pmatrix} \quad \text{and} \quad {\boldsymbol{ \gamma}}:= \begin{pmatrix} {\boldsymbol{\gamma}}_{P}\\{\boldsymbol{\gamma}}_{S} \end{pmatrix} , \quad\text{with } ( \mathbf{A}_{\alpha} ) _{m}:= a^{\alpha}_{m} \bigl({\mathbf{u}}^{\mathrm{inc}}\bigr) \text{ and } ( {\boldsymbol{ \gamma}}_{\alpha} ) _{m}:=\gamma^{\alpha}_{m},\ \forall m\in \mathbb {Z}. $$

It can be easily seen, by the definitions of \(\mathbf{A}\) and \({\boldsymbol{\gamma}}\), and the fact that \(\mathbf{W}_{\infty}\) is Hermitian, that

$$\begin{aligned} {\boldsymbol{\gamma}}= \frac{i}{4\rho_{0}\omega^{2}} \mathbf {A}^{\top} \mathbf{W}_{\infty} \quad\text{and}\quad {\boldsymbol{\gamma}}\cdot \overline{{\boldsymbol{\gamma}}}= \frac {1}{(4\rho_{0}\omega^{2})^{2}}\mathbf{A}^{T} \mathbf{W}_{\infty }\overline{\mathbf{W}_{\infty}}\overline{ \mathbf{A}}. \end{aligned}$$

On the other hand, using the orthogonality relations (3.1)–(3.2) of the cylindrical surface vector potentials and fairly easy manipulations, we have

$$\begin{aligned} \int_{0}^{2\pi} \biggl( \frac{1}{{\kappa }_{P}}\bigl\vert {\mathbf{u}}^{\infty }_{P}({\hat{{\mathbf{x}}}};\hat {{\mathbf{d}}})\bigr\vert ^{2}+ \frac{1}{{\kappa }_{S}}\bigl\vert {\mathbf{u}}^{\infty }_{S}({\hat{{\mathbf{x}}}};\hat {{\mathbf{d}}})\bigr\vert ^{2} \biggr) d\theta = 4 {\boldsymbol{\gamma}}\cdot\overline{{ \boldsymbol{\gamma}}}= \frac{4}{(4\rho_{0}\omega^{2})^{2}}\mathbf{A}^{T}\mathbf {W}_{\infty}\overline{\mathbf{W}_{\infty}}\overline{\mathbf{A}}. \end{aligned}$$
(C.1)

Similarly, by virtue of superposition principle, the RHS of the identity (3.22) can be written as

$$\begin{aligned} & 2 \biggl[\sqrt{\frac{2\pi}{ {\kappa }_{P}}} \Im m \bigl\{ \sqrt{i} {\mathbf{u}}^{\infty}_{P}( \hat {{\mathbf{d}}};\hat {{\mathbf{d}}}, P)\cdot\hat {{{\boldsymbol {e}}}}_{r} \bigr\} - \sqrt{ \frac{2\pi}{ {\kappa }_{S}}}\Im m \bigl\{ \sqrt{i} {\mathbf{u}}^{\infty}_{S}( \hat {{\mathbf{d}}};\hat {{\mathbf{d}}}, S)\cdot\hat {{{\boldsymbol {e}}}}_{\theta} \bigr\} \biggr] \\ &\quad =\frac{4}{4\rho_{0}\omega^{2}}\Im m \bigl\{ \mathbf{A}^{\top } \mathbf{W}_{\infty} \overline{\mathbf{A}} \bigr\} . \end{aligned}$$
(C.2)

Substituting (C.1) and (C.2) in (3.22), one gets

$$\begin{aligned} \frac{1}{4\rho_{0}\omega^{2}} \mathbf{A}^{T}\mathbf{W}_{\infty }\overline{ \mathbf{W}_{\infty}}\overline{\mathbf{A}}=\Im m \bigl\{ \mathbf{A}^{\top}\mathbf{W}_{\infty} \overline{\mathbf{A}} \bigr\} . \end{aligned}$$
(C.3)

Finally, note that

$$\begin{aligned} \Im m \bigl\{ \mathbf{A}^{\top}\mathbf{W}_{\infty} \overline { \mathbf{A}} \bigr\} &= \Re e \bigl\{ \mathbf{A}^{\top} \bigr\} \Im m \{ \mathbf{W}_{\infty} \} \Re e \{ \mathbf {A} \} -\Re e \bigl\{ \mathbf{A}^{\top} \bigr\} \Re e \{ \mathbf{W}_{\infty} \} \Im m \{ \mathbf{A} \} \\ &\quad{}+\Im m \bigl\{ \mathbf{A}^{\top} \bigr\} \Re e \{ \mathbf {W}_{\infty} \} \Re e \{ \mathbf{A} \} +\Im m \bigl\{ \mathbf{A}^{\top} \bigr\} \Im m \{ \mathbf {W}_{\infty} \} \Im m \{ \mathbf{A} \} . \end{aligned}$$

Recall that each term on the RHS of the above equation is a scalar and the matrix \(\mathbf{W}_{\infty}\) is Hermitian. Thus, the second term cancels out the third one on transposition. Finally, the first and the fourth terms can be combined to yield

$$\begin{aligned} \Im m \bigl\{ \mathbf{A}^{\top}\mathbf{W}_{\infty} \overline { \mathbf{A}} \bigr\} = \mathbf{A}^{\top}\Im m \{ \mathbf {W}_{\infty} \} \overline{\mathbf{A}}. \end{aligned}$$
(C.4)

The relation (3.23) follows by substituting (C.4) back in (C.3). This completes the proof.

Appendix D: Proof of Theorem 5.2

Recall that, for \(t\to0\),

$$\begin{aligned} &J_{n}(t)=\phantom{-}\frac{t^{n}}{2^{n}\varGamma(n+1)}+O\bigl(t^{n+1} \bigr), \\ &J'_{n}(t)=\frac{nt^{n-1}}{2^{n}\varGamma(n+1)}+O \bigl(t^{n}\bigr), \\ & H_{n}^{(1)}(t)=-i\frac{2^{n}\varGamma(n)}{\pi t^{n}}+O \bigl(t^{-n+1}\bigr), \\ &\bigl(H_{n}^{(1)}\bigr)'(t)=i \frac{2^{n}\varGamma(n+1)}{\pi t^{n+1}}+O\bigl(t^{-n}\bigr). \end{aligned}$$

Hence, by the definition of \(B^{\alpha}_{n}(t,\lambda,\mu)\), \(C^{\alpha}_{n}(t,\lambda,\mu)\), \(\widehat{B}^{\alpha }_{n}(t,\lambda,\mu)\) and \(\widehat{C}^{\alpha}_{n}(t,\lambda,\mu )\), we have

$$\begin{aligned} &B^{P}_{n}(t,\lambda,\mu)=-\frac{i\mu2^{n+1}\varGamma(n+1)}{\pi t^{n}}+O \bigl(t^{-n+1}\bigr), \\ &C^{S}_{n}(t,\mu)=\frac{i\mu2^{n+1}\varGamma(n+1)}{\pi t^{n}}+O \bigl(t^{-n+1}\bigr), \\ &C^{P}_{n}(t,\mu)=-B^{S}_{n}(t, \lambda,\mu) =-\frac{\mu\,2^{n+1}\varGamma(n+1)\,(n+1)}{\pi t^{n}}+O\bigl(t^{-n+1}\bigr), \\ &\widehat{B}^{P}_{n}(t,\lambda,\mu) =- \frac{\mu t^{n}}{2^{n-1}\varGamma(n)}+O\bigl(t^{n+1}\bigr), \\ &\widehat{C}^{S}_{n}(t,\lambda,\mu) = \frac{\mu t^{n}}{2^{n-1}\varGamma(n)}+O\bigl(t^{n+1}\bigr), \\ &\widehat{C}^{P}_{n}(t,\lambda,\mu)=- \widehat{B}^{S}_{n}(t,\lambda ,\mu) =i\frac{\mu(n-1) t^{n}}{2^{n-1}\varGamma(n)}+O \bigl(t^{n+1}\bigr), \end{aligned}$$

as \(t\to0\). Inserting the previous asymptotic behavior into the expression of \(\mathbf{M}_{n,j}\), we get

$$\begin{aligned} \mathbf{M}_{n,j}= \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix} , \end{aligned}$$

where

$$\begin{aligned} \mathbf{A}_{11} &= \frac{n}{2^{n}\varGamma(n+1)} \begin{pmatrix} t^{n}_{j,P} & i t^{n}_{j,S} \\ i t^{n}_{j,P} & -t^{n}_{j,S} \end{pmatrix} +O\bigl(\omega^{n+1}\bigr), \\ \mathbf{A}_{12} &= \frac{2^{n}\varGamma(n+1)}{\pi} \begin{pmatrix} it^{-n}_{j,P} & t^{-n}_{j,S} \\ t^{-n}_{j,P} & -it^{-n}_{j,S} \end{pmatrix} +O\bigl(\omega^{-n+1}\bigr), \\ \mathbf{A}_{21} &= -\frac{\mu}{2^{n-1}\varGamma(n)} \begin{pmatrix} -t^{n}_{j,P} & -i(n-1) t^{n}_{j,S} \\ i(n-1) t^{n}_{j,P} & t^{n}_{j,S} \end{pmatrix} +O\bigl(\omega^{n+1}\bigr), \\ \mathbf{A}_{22} &= -\frac{2^{n+1}\mu\varGamma(n+1)}{\pi} \begin{pmatrix} it^{-n}_{j,P} & -(n+1)t^{-n}_{j,S} \\ (n+1)t^{-n}_{j,P} & -it^{-n}_{j,S} \end{pmatrix} +O\bigl(\omega^{-n+1}\bigr). \end{aligned}$$

It implies that

$$\begin{aligned} \mathbf{M}_{n,j} &= \begin{pmatrix} O(\omega^{n+1}) & O(\omega^{-n+1}) \\O(\omega^{n}) & O(\omega^{-n}) \end{pmatrix} , \quad j=1,\ldots, L, \end{aligned}$$
(D.1)
$$\begin{aligned} \mathbf{M}_{n,L} &= \begin{pmatrix} 0 & 0 \\O(\omega^{n}) & O(\omega^{-n}) \end{pmatrix} , \quad\text{as} \;\; \omega\to0. \end{aligned}$$
(D.2)

Moreover, the inverse of \(\mathbf{M}_{n,j}\) can be expressed as

$$\begin{aligned} \mathbf{M}_{n,j}^{-1} &= \begin{pmatrix} \mathbf{A}_{11}^{-1}+\mathbf{A}_{11}^{-1}\mathbf{A}_{12}\mathbf {B}^{-1} \mathbf{A}_{21}\mathbf{A}^{-1}_{11} & -\mathbf{A}_{11}^{-1}\mathbf{A}_{12} \mathbf{B}^{-1} \\ -{\mathbf{B}}^{-1}\mathbf{A}_{21}\mathbf{A}_{11}^{-1} & \mathbf{B}^{-1} \end{pmatrix} , \end{aligned}$$

where \(\mathbf{B}\) is the Schur’s complement of \(\mathbf{A}_{22}\), that is,

$$\mathbf{B}:=\mathbf{A}_{22}-\mathbf{A}_{21}\mathbf {A}_{11}^{-1}\mathbf{A}_{12}. $$

Since

$$\begin{aligned} \mathbf{A}_{11}^{-1}=O\bigl(\omega^{-n-1}\bigr), \quad \mathbf{A}_{11}^{-1}\mathbf{A}_{12}=O\bigl( \omega^{-2n}\bigr), \quad \mathbf{A}_{21} \mathbf{A}_{11}^{-1}=O\bigl(\omega^{-1}\bigr), \quad\text{and}\quad \mathbf{B}^{-1}=O\bigl(\omega^{n} \bigr), \end{aligned}$$

it follows that

$$\begin{aligned} \mathbf{M}^{-1}_{n,j}= \begin{pmatrix} O(\omega^{-n-1}) & O(\omega^{-n}) \\O(\omega^{n-1}) & O(\omega^{n}) \end{pmatrix} , \quad\text{as }\omega\to0. \end{aligned}$$
(D.3)

Inserting (D.1), (D.2) and (D.3) into the expression (5.7) of \(\mathbf{Q}^{(n)}\) and then making use of the series expansions of \(J_{n}\), \(Y_{n}\), \(J'_{n}\) and \(Y_{n}'\), we find out that

$$\begin{aligned} \mathbf{Q}^{(n)}_{21}\bigl(\lambda,\mu,\rho \omega^{2}\bigr) &=\omega^{n} \Biggl( \mathbf {G}_{n,0}( \lambda,\mu,\rho)+\sum_{l=1}^{N-n}\sum _{j=0}^{L+1} \mathbf {G}_{n,l}^{(j)}( \lambda,\mu,\rho)\omega^{2l}(\ln\omega)^{j} + o \bigl( \omega^{2(N-n)} \bigr) \Biggr) , \\ \mathbf{Q}^{(n)}_{22}\bigl(\lambda,\mu,\rho \omega^{2}\bigr) &=\omega^{-n} \Biggl( \mathbf {H}_{n,0}( \lambda,\mu,\rho)+\sum_{l=1}^{N-n}\sum _{j=0}^{L+1} \mathbf {H}_{n,l}^{(j)}( \lambda,\mu,\rho)\omega^{2l}(\ln\omega)^{j} + o \bigl( \omega^{2(N-n)} \bigr) \Biggr) , \end{aligned}$$

for some functions \(\mathbf{G}_{n,0}\), \(\mathbf{G}_{n,l}^{(j)}\), \(\mathbf{H}_{n,0}\), \(\mathbf{H}_{n,l}^{(j)}\). This together with (5.8) yields (5.9). Here, the remaining terms \(o(\omega^{2(N-n)})\) are understood element-wise for the matrices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, T., Ammari, H., Hu, G. et al. Two-Dimensional Elastic Scattering Coefficients and Enhancement of Nearly Elastic Cloaking. J Elast 128, 203–243 (2017). https://doi.org/10.1007/s10659-017-9624-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9624-7

Keywords

Mathematics Subject Classification

Navigation