Skip to main content

Advertisement

Log in

Mechanical and Optical Properties of Anisotropic Single-Crystal Prisms

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The great interest in scintillating crystals, is related to their applications in the high energy physics, biomedicine and security. For this reason a complete characterization and understanding of their structural, optical and mechanical properties at the macroscopic level is necessary. We must give a complete theoretical characterization of the mechanics and optics of bulk prismatic single-crystal bodies in order to design experiments. This work shall deal solely with the theoretical description within the framework of linear theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Pierre-Augustin Bertin (Besancon 1818–Pargot 1884) Professor of Physics at Strasbourg and from 1866 at the École Normale in Paris.

  2. In the following we shall use the convention that the Latin index run on 1,2,3 whereas the Greek index run on 1,2.

  3. Since our analysis is aimed to understand the results of mechanical and optical experiments performed at constant applied normal force, bending moments and torque, i.e., for T 1=T 2=0, then we shall look in detail only at the solution for the so-called Extension (N≠0), Bending (M α ≠0) and Torsion (M 3≠0), the so-called Flexure case (M 1(x 3)=M 1(0)+T 2 x 3≠0,M 2(x 3)=M 2(0)−T 1 x 3≠0) being studied in full details into [18].

  4. The refraction index can be negative, vid., e.g., [26].

  5. The tabular form of \(\mathbb {M}\) is the same as that of \(\mathbb {C}\), provided \(\mathbb {M}_{ijhk}\neq \mathbb {M}_{hkij}\), vid. [23, 24].

  6. The tabular form of \(\mathbb {M}\) is the same of \(\mathbb {C}\), provided the lack of major symmetry and with the addition of the terms \(\mathbb {M}_{1323}=-\mathbb {M}_{2313}\).

References

  1. Korzhik, M., Annekov, A., Gektin, A., Pedrini, C.: Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering. Particle Acceleration and Detection. Springer, Heidelberg (2006)

    Google Scholar 

  2. Scheel, H.J., Fukuda, T.: Crystal Growth Tecnology. Wiley, Chichester (2003)

    Google Scholar 

  3. Dhaanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds.): Springer Handbook of Crystal Growth. Springer, Berlin (2010)

    Google Scholar 

  4. Leitao, U.A., Righi, A., Bourson, P., Pimenta, M.A.: Optical study of LiKSO4 crystals under uniaxial pressure. Phys. Rev. B 50(5), 2754–2759 (1994)

    Article  ADS  Google Scholar 

  5. Ishii, M., Harada, K., Kobayashi, M., Usuki, Y., Yazawa, T.: Mechanical properties of PWO scintillating crystals. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 376, 203–207 (1996)

    Article  ADS  Google Scholar 

  6. Mytsyk, B.G., Andrushchak, A.S., Kost’, Ya.P.: Static photoelasticity of gallium phosphide crystals. Crystallogr. Rep. 57(1), 124–130 (2011)

    Article  ADS  Google Scholar 

  7. Skab, I., Vasylkiv, Y., Savaryn, V., Vlokh, R.: Relations for optical indicatrix parameters at the crystal torsion. Ukr. J. Phys. Opt. 11(4), 193–240 (2010)

    Article  Google Scholar 

  8. Vasylkiv, Y., Savaryn, V., Smaga, I., Skab, I., Vlokh, R.: On the determination of sign of the piezo-optic coefficients using torsion method. Appl. Opt. 50(17), 2512–2518 (2011)

    Article  ADS  Google Scholar 

  9. Krupych, O., Savaryn, V., Vlokh, R.: Precis determination of the full matrix piezo-optic coefficients with a four-point bending technique: the example of lithium niobate crystals. Appl. Opt. 53(10), B1–B7 (2014)

    Article  Google Scholar 

  10. Lebeau, M., Gobbi, L., Majni, G., Pietroni, P., Paone, N., Rinaldi, D.: Mapping residual stresses in PbWO4 crystals using photoelastic analysis. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 537, 154–158 (2005)

    Article  ADS  Google Scholar 

  11. Ciriaco, A., Daví, F., Lebeau, M., Majni, G., Paone, N., Pietroni, P., Rinaldi, D.: PWO photo-elastic parameters calibration by laser-based polariscope. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 570, 55–60 (2007)

    Article  ADS  Google Scholar 

  12. Rinaldi, D., Pietroni, P., Daví, F.: Isochromate fringes simulation by Cassini-like curves for photoelastic analysis of birefringent crystals. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 603, 294–300 (2009)

    Article  ADS  Google Scholar 

  13. Scalise, L., Rinaldi, D., Daví, F., Paone, N.: Measurement of ultimate tensile strenght and Young modulus in LYSO scintillating crystals. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 654, 122–126 (2011)

    Article  ADS  Google Scholar 

  14. Daví, F., Rinaldi, D.: Elastic moduli and optical properties of LYSO crystals. Theory and experiments. IEEE Ttrans. Nucl. Sci. 59(5), 2106–2111 (2012)

    Article  ADS  Google Scholar 

  15. Saint-Venant, A.-J.-C.B.: Mémoire sur la flexion des prismes. J. Math. Pures Appl., Ser. II 1, 89 (1856)

    Google Scholar 

  16. Saint-Venant, A.-J.-C.B.: Mémoire sur la torsion des prismes. Mém. Savants étrang. 14, 233 (1856)

    Google Scholar 

  17. Voigt, W.: Lehrbuch der Krystallphysik (mit Anschluss der Krystalloptik). Mathematischen Wissenschaften, vol. XXXIV. Teubner, Leipzig und Berlin (1910)

    Google Scholar 

  18. Daví, F., Tiero, A.: On the Saint-Venant’s problem with Voigt hypotheses for anisotropic solids. J. Elast. 36, 183–199 (1994)

    Article  MATH  Google Scholar 

  19. Fichera, G.: Problemi Analitici Nuovi nella Fisica Matematica Classica. Quaderni GNFM, Gruppo Nazionale Fisica Matematica, Firenze (1985)

    Google Scholar 

  20. Iesan, D.: Saint-Venant Problem. Lecture Notes in Mathematics, vol. 1279. Springer, New York (1985)

    Google Scholar 

  21. Clebsch, A.: Theorie der Elastizität fester Korper. Teubner, Leipzig (1862)

    Google Scholar 

  22. Gurtin, M.E.: The linear theory of elasticity. In: Handbook of Physics, vol. VIa/2. Springer, New York (1972)

    Google Scholar 

  23. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, London (1985)

    Google Scholar 

  24. Authier, A. (ed.): International Tables for Crystallography. D—Physical Properties of Crystals. Kluwer, Dordrecht (2003)

    Google Scholar 

  25. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  26. Shelby, R.A., Smith, D.R., Wolf, E.: Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  ADS  Google Scholar 

  27. Abbot, R.N. Jr.: Calculation of the orientation of the optical indicatrix in monoclinic and triclinic crystals: The point-dipole model. Am. Mineral. 78, 952–956 (1993)

    Google Scholar 

Download references

Acknowledgements

This work, which is within the scope of the CERN R&D Experiment 18, Crystal Clear Collaboration (CCC), was supported solely with resources of the DICEA and SIMAU, Universitá Politecnica delle Marche, Ancona, Italy. We wish to thank Michel Lebeau, former CERN associate, for his continuous interest in our work. The authors wish to thanks the Reviewers for the very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Daví.

Appendix

Appendix

In this appendix we show how we obtained the linear relations (52) and (54) between the angles δ, φ and the applied stress T 33.

We begin with (52): by using (46) into (47):

$$\tan\delta=\frac{B_{12}}{B_{1}-B_{11}}=\frac {2B_{12}}{B_{22}-B_{11}+\sqrt{(B_{22}-B_{11})^{2}+4B_{12}^{2}}}; $$

then, since the components of B depends on T 33, by setting:

$$u(T_{33})=\frac{2B_{12}}{B_{22}-B_{11}+\sqrt {(B_{22}-B_{11})^{2}+4B_{12}^{2}}}, $$

we arrive at the non linear relation:

$$ \delta(T_{33})=\tan^{-1}\bigl(u(T_{33}) \bigr). $$
(85)

We take the Taylor expansion of (85) about T 33=0:

$$\delta(T_{33})=\delta(0)+\delta'(0)T_{33}+o \bigl(T_{33}^{2}\bigr),\qquad(\cdot )'= \frac{d}{dT_{33}}, $$

where δ(0)=δ 0, the value of the angle in the unstressed state and:

$$\delta'=\frac{1}{1+u^{2}}u'. $$

If we set:

$$v(T_{33})=2B_{12},\qquad w(T_{33})=B_{22}-B_{11} , $$

we can rewrite u as follows:

$$u=\frac{v}{w+\sqrt{v^{2}+w^{2}}}, $$

and accordingly:

$$u'=\biggl(\frac{v}{w+\sqrt{v^{2}+w^{2}}}\biggr)'= \frac{v'(w+\sqrt {v^{2}+w^{2}})-v\bigl(w'+{\frac{vv'+ww'}{\sqrt {v^{2}+w^{2}}}}\bigr)}{(w+\sqrt{v^{2}+w^{2}})^{2}}. $$

Since for T 33=0 we have:

$$u=\tan\delta_{0},\qquad v=2B^{0}_{12},\qquad w=B^{0}_{22}-B^{0}_{11}, $$

and

$$v'=\mathbb {M}_{1233},\qquad w'=\mathbb {M}_{2233}- \mathbb {M}_{1133}, $$

then we have:

$$\frac{1}{1+u^{2}}(0)=\frac{1}{1+\tan^{2}\delta_{0}}=\frac{\cos^{2}\delta _{0}}{\sin^{2}\delta_{0}+\cos^{2}\delta_{0}}=\cos^{2} \delta_{0}, $$

and:

$$u'(0)=\frac{\mathbb {M}_{1233}(w+\sqrt{v^{2}+w^{2}})-v\bigl(\mathbb {M}_{2233}-\mathbb {M}_{1133}+{\frac{v\mathbb {M}_{1233}+w(\mathbb {M}_{2233}-\mathbb {M}_{1133})}{\sqrt{v^{2}+w^{2}}}}\bigr)}{(w+\sqrt{v^{2}+w^{2}})^{2}}. $$

By using again (46) and (47) we finally arrive at:

$$M=\delta'(0)=\frac{2\cos^{2}\delta_{0}}{B^{0}_{1}-B^{0}_{11}}\biggl(\mathbb {M}_{1233}+\tan \delta_{0}\frac{(\mathbb {M}_{2233}-\mathbb {M}_{1133})(B^{0}_{1}-B^{0}_{11})+4B^{0}_{12}\mathbb {M}_{1233}}{B^{0}_{1}-B^{0}_{2}}\biggr). $$

For (54) we start from (48):

$$ \varphi(T_{33})=\sin^{-1}\sqrt{ \frac{B_{2}-B_{3}}{B_{1}-B_{3}}}, $$
(86)

where the eigenvalues are given by:

$$\begin{aligned} B_{1} =&\frac{1}{2}\bigl(B^{0}_{11}+B^{0}_{22}+( \mathbb {M}_{1133}+\mathbb {M}_{2233})T_{33}\bigr) \\ &{}-\sqrt{\biggl(\frac{B^{0}_{11}-B^{0}_{22}+(\mathbb {M}_{1133}+\mathbb {M}_{2233})T_{33}}{2}\biggr)^{2}+ \bigl(B_{12}^{0}+\mathbb {M}_{1233}T_{33} \bigr)^{2}}, \\ B_{2} =&\frac{1}{2}\bigl(B^{0}_{11}+B^{0}_{22}+( \mathbb {M}_{1133}+\mathbb {M}_{2233})T_{33}\bigr) \\ &{}+\sqrt{\biggl(\frac{B^{0}_{11}-B^{0}_{22}+(\mathbb {M}_{1133}+\mathbb {M}_{2233})T_{33}}{2}\biggr)^{2}+ \bigl(B_{12}^{0}+\mathbb {M}_{1233}T_{33} \bigr)^{2}}, \\ B_{3} =&B^{0}_{33}+\mathbb {M}_{3333}T_{33} , \end{aligned}$$

and we can set:

$$\begin{aligned} u(T_{33}) =&\frac{1}{2}\bigl(B^{0}_{11}+B^{0}_{22}-2B_{33}+( \mathbb {M}_{1133}+\mathbb {M}_{2233}-2\mathbb {M}_{3333})T_{33} \bigr), \\ w(T_{33}) =&\biggl(\frac{B^{0}_{11}-B^{0}_{22}+(\mathbb {M}_{1133}+\mathbb {M}_{2233})T_{33}}{2}\biggr)^{2}+ \bigl(B_{12}^{0}+\mathbb {M}_{1233}T_{33} \bigr)^{2}, \end{aligned}$$

to write (86) as:

$$ \varphi(T_{33})=\sin^{-1}\sqrt{ \frac{u+\sqrt{w}}{u-\sqrt{w}}}. $$
(87)

By linearizing (87) about T 33=0 we get

$$\varphi(T_{33})=\varphi(0)+\varphi'(0)T_{33}+o \bigl(T_{33}^{2}\bigr), $$

where φ(0)=φ 0 the angle at the unstressed state and where by the chain rule:

$$ \varphi'(T_{33})=\sqrt{\frac{u+\sqrt{w}}{\sqrt{w}}} \frac{w'u-u'w}{2\sqrt{w}(u-\sqrt{w})^{2}}\sqrt{\frac{u-\sqrt{w}}{u+\sqrt {w}}}. $$
(88)

By evaluating (88) for T 33=0 we get the (54) with:

$$ K=\frac{(B^{0}_{11}-B^{0}_{22})(\mathbb {M}_{1133}-\mathbb {M}_{2233})+B^{0}_{12}\mathbb {M}_{1233}}{B^{0}_{1}+B^{0}_{2}-2B^{0}_{3}}. $$
(89)

A similar analysis can be done for the other two cases to obtain:

$$\begin{aligned} K =&\bigl(2B^{0}_{3}-B^{0}_{1}-B^{0}_{2} \bigr)\frac{((B^{0}_{11}-B^{0}_{22})(\mathbb {M}_{1133}-\mathbb {M}_{2233})+4B^{0}_{12}\mathbb {M}_{1233})}{(2B^{0}_{3}+B^{0}_{1}-3B^{0}_{2})(B^{0}_{1}-B^{0}_{2})} \\ &{}+\frac{2(B^{0}_{1}-B^{0}_{2})(\mathbb {M}_{1133}+\mathbb {M}_{2233}-2\mathbb {M}_{3333})}{ 2B^{0}_{3}+B^{0}_{1}-3B^{0}_{2}}, \end{aligned}$$
(90)

when B 3>B 1>B 2 and

$$K=\hat{K}\sin^{4}\varphi_{0} $$

when B 1>B 3>B 2, where \(\hat{K}\) is given by (90).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daví, F., Rinaldi, D. Mechanical and Optical Properties of Anisotropic Single-Crystal Prisms. J Elast 120, 197–224 (2015). https://doi.org/10.1007/s10659-014-9511-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-014-9511-4

Keywords

Mathematics Subject Classification (2010)

Navigation