Skip to main content
Log in

Stress Concentration Factor in Functionally Graded Plates with Circular Holes Subjected to Anti-plane Shear Loading

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Stress concentration factors due to the presence of geometrical discontinuities (circular holes) in functionally graded plates are derived. The material property inhomogeneity is assumed to be in the radial direction originating at the center of the plate. Variable separable closed-form solutions are obtained for the stresses and displacements in functionally graded plates (without and with holes) subjected to anti-plane shear loading. The stresses in functionally graded plates without a hole are not homogeneous as it is in the case of homogeneous plates. Either a stress concentration (more than the applied stress) or dilution (less than the applied stress) occurs depending on whether the modulus increases (hardening graded material) or decreases (softening graded material) away from the center of the graded plate without a hole. A novel definition of the stress concentration factor due to the geometrical discontinuity in functionally graded plates is derived. The effect of the circular hole in functionally graded plates is to magnify (compared to homogeneous plates) the stress concentration when the modulus decreases away from the center of the hole (softening material). Beneficial reduction of the stress concentration factor is achieved in hardening functionally graded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aguiar, A.R., Fosdick, R.L., Sánchez, J.A.G.: A study of penalty formulations used in the numerical approximation of a radially symmetric elasticity problem. J. Mech. Mater. Struct. 3, 1403–1427 (2008)

    Article  Google Scholar 

  2. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60(1–6), 195–216 (2007)

    Article  ADS  Google Scholar 

  3. Birman, V., Byrd, L.W.: Stability and natural frequencies of functionally graded stringer-reinforced panels. Composites, Part B, Eng. 39(5), 816–825 (2008)

    Article  Google Scholar 

  4. Byrd, L., Rickerd, G., Wyen, T., Cooley, G., Quast, J.: Test method for the fatigue life of layered TiB/Ti functionally graded beams subjected to fully reversed bending. In: 9th International Conference on Multiscale and Functionally Graded Materials, Oahu, HI (2006)

    Google Scholar 

  5. Chen, X.L., Gu, L.J., Zou, B.L., Wang, Y., Cao, X.Q.: New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying. Surf. Coat. Technol. 206(8–9), 2265–2274 (2012)

    Article  Google Scholar 

  6. Dineva, P., Gross, D., Muller, R., Rangelov, T.: Dynamic stress and electric field concentration in a functionally graded piezoelectric solid with a circular hole. Z. Angew. Math. Mech. 91(2), 110–124 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fosdick, R.L., Royer-Carfagni, G.: The constraint of local injectivity in linear elasticity theory. Proc. R. Soc. Lond. A 457, 2167–2187 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Gal, D., Dvorak, J.: Stresses in anisotropic cylinders. Mech. Res. Commun. 22(2), 109–113 (1995)

    Article  Google Scholar 

  9. Gardner, N., Wang, E., Kumar, P., Shukla, A.: Blast mitigation in a sandwich composite using graded core and polyurea interlayer. Exp. Mech. 52(2), 119–133 (2012)

    Article  Google Scholar 

  10. Genin, G.M., Kent, A., Birman, V., Wopenka, B., Pasteris, J.D., Marquez, P.J., Thomopoulos, S.: Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97(4), 976–985 (2009)

    Article  ADS  Google Scholar 

  11. Hause, T.: Advanced functionally graded plate-type structures impacted by blast loading. Int. J. Impact Eng. 38(5), 314–321 (2011)

    Article  Google Scholar 

  12. Horgan, C.O., Baxter, S.C.: Effects of curvilinear anisotropy on radially symmetric stresses in anisotropic linearly elastic solids. J. Elast. 42, 31–48 (1996)

    Article  MATH  Google Scholar 

  13. Horgan, C.O., Chan, A.M.: The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. J. Elast. 55, 43–59 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jin, Z.-H., Batra, R.C.: Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids 44, 1221–1235 (1996)

    Article  ADS  Google Scholar 

  15. Kubair, D.: Alternate expressions for the near-tip in-plane mixed-mode K-field stresses and displacements. Eng. Fract. Mech. 77(14), 2927–2934 (2010)

    Article  Google Scholar 

  16. Kubair, D.: Analysis and finite element simulations of the near-tip singular fields around a mode-3 stationary crack in plastically graded materials. Int. J. Solids Struct. 48(3–4), 428–440 (2011)

    Article  MATH  Google Scholar 

  17. Kubair, D., Bhanu-Chandar, B.: Mode-3 spontaneous crack propagation along functionally graded bimaterial interfaces. J. Mech. Phys. Solids 55(6), 1145–1165 (2007)

    Article  ADS  MATH  Google Scholar 

  18. Kubair, D., Bhanu-Chandar, B.: Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. Int. J. Mech. Sci. 50(4), 732–742 (2008)

    Article  MATH  Google Scholar 

  19. Kubair, D., Geubelle, P., Lambros, J.: Asymptotic analysis of a mode III stationary crack in a ductile functionally graded material. J. Appl. Mech. 72(4), 461–467 (2005)

    Article  ADS  MATH  Google Scholar 

  20. Kulkarni, M., Pal, S., Kubair, D.: Mode-3 spontaneous crack propagation in unsymmetric functionally graded materials. Int. J. Solids Struct. 44(1), 229–241 (2007)

    Article  MATH  Google Scholar 

  21. Liu, Y., Zhu, D.H., Chen, J.L., Zhou, Z.J., Yan, R.: Exposure of W-TiC/Cu functionally graded materials in the edge plasma of HT-7 tokamak. Plasma Sci. Technol. 14(2), 177–180 (2012)

    Article  ADS  Google Scholar 

  22. Lubarda, V.A.: Constitutive analysis of thin biological membranes with application to radial stretching of a hollow circular membrane. J. Mech. Phys. Solids 58(6), 860–873 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Lubarda, V.A.: On pressurized curvilinearly orthotropic circular disk, cylinder and sphere made of radially nonuniform material. J. Elast. 109, 103–133 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mai, P.L., Fang, W.L., Liu, G.H., Chen, Y.X., He, S.L., Li, J.T.: Preparation of W-Ni graded alloy by combustion synthesis melt-casting under ultra-high gravity. Mater. Lett. 65(23–24), 3496–3498 (2011)

    Article  Google Scholar 

  25. Missiaen, J.M., Raharijaona, J.J., Antoni, A., Pascal, C., Richou, M., Magaud, P.: Design of a W/steel functionally graded material for plasma facing components of DEMO. J. Nucl. Mater. 416(3), 262–269 (2011)

    Article  ADS  Google Scholar 

  26. Mohammadi, M., Dryden, J.R., Jiang, L.Y.: Stress concentration around a hole in a radially inhomogeneous plate. Int. J. Solids Struct. 48(3–4), 483–491 (2011)

    Article  MATH  Google Scholar 

  27. Muller, R., Dineva, P., Rangelov, T., Gross, D.: Anti-plane dynamic hole-crack interaction in a functionally graded piezoelectric media. Arch. Appl. Mech. 82(1), 97–110 (2012)

    Article  ADS  Google Scholar 

  28. Nguyen, C.H., Chandrashekhara, K., Birman, V.: Multifunctional thermal barrier coating in aerospace sandwich panels. Mech. Res. Commun. 39(1), 35–43 (2012)

    Article  Google Scholar 

  29. Pal, S., Kulkarni, M., Kubair, D.: Mode-3 spontaneous crack propagation in symmetric functionally graded materials. Int. J. Solids Struct. 44(1), 242–254 (2007)

    Article  MATH  Google Scholar 

  30. Short, M.P., Ballinger, R.G.: A functionally graded composite or service in high-temperature lead- and lead-bismuth-cooled nuclear reactors, I: design. Nucl. Technol. 177(3), 366–381 (2012)

    Google Scholar 

  31. Sohn, Y.H., Patterson, T., Hofmeister, C., Kammerer, C., Mohr, W., Van Den Bergh, M., Shaeffer, M., Seaman, J., Cho, K.: Tailoring microstructure and properties of hierarchical aluminum metal matrix composites through friction stir processing. JOM 64(2), 234–238 (2012)

    Article  Google Scholar 

  32. Stapleton, S.E., Waas, A.M., Arnold, S.M.: Functionally graded adhesives for composite joints. Int. J. Adhes. Adhes. 35, 36–49 (2012)

    Article  Google Scholar 

  33. Ting, T.C.T.: New solutions to pressuring, shearing, torsion and extension of a cylindrically anisotropic elastic circular tube or bar. Proc. R. Soc. Lond. A 455, 3527–3542 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Tutanku, N.: Stresses in thick-walled FGM cylinders with exponentially-varying properties. Eng. Struct. 29, 2032–2035 (2007)

    Article  Google Scholar 

  35. Wang, X., Pan, E.: On a finite crack partially penetrating two circular inhomogeneities and some related problems. Appl. Math. Model. 36(4), 1766–1775 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Wang, X.H., Fang, X.Q., Liu, J.X., Hu, C.: Dynamic stress from a circular hole in a functionally graded piezoelectric/piezomagnetic material subjected to shear waves. Philos. Mag. 89(33), 3059–3074 (2009)

    Article  ADS  Google Scholar 

  37. Wingfield, C., Franzel, L., Bertino, M.F., Leventis, N.: Fabrication of functionally graded aerogels, cellular aerogels and anisotropic ceramics. J. Mater. Chem. 21(32), 11737–11741 (2011)

    Article  Google Scholar 

  38. Yang, Q.Q., Gao, C.F., Chen, W.T.: Stress analysis of a functional graded material plate with a circular hole. Arch. Appl. Mech. 80(8), 895–907 (2010)

    Article  ADS  MATH  Google Scholar 

  39. Yang, Q.Q., Gao, C.F., Chen, W.T.: Stress concentration in a finite functionally graded material plate. Sci. China, Phys. Mech. Astron. 55(7), 1263–1271 (2012)

    Article  ADS  Google Scholar 

  40. Zhang, Y., Sun, M.J., Zhang, D.Z.: Designing functionally graded materials with superior load-bearing properties. Acta Biomater. 8(3), 1101–1108 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kubair.

Appendix: Stress Concentration Factor in a Homogeneous Material

Appendix: Stress Concentration Factor in a Homogeneous Material

In this Appendix we list the stresses and displacements in a homogeneous plate with a circular hole subjected to an anti-plane shear loading. Starting from the variable separable solution (Eq. (14)) and with the boundary conditions given by Eq. (22) we can write the displacements and stresses in a homogeneous material as

$$ \begin{aligned} &w( r,\theta) = \frac{\sigma_{\infty }}{\mu} r\biggl[ 1 + \biggl( \frac{a}{r} \biggr)^{2} \biggr]\sin( \theta), \\ &\frac{\sigma_{rz}( r,\theta )}{\sigma_{\infty }} = \biggl[ 1 - \biggl( \frac{a}{r} \biggr)^{2} \biggr]\sin( \theta), \\ &\frac{\sigma_{\theta z}( r,\theta )}{\sigma_{\infty }} = \biggl[ 1 + \biggl( \frac{a}{r} \biggr)^{2} \biggr]\cos( \theta). \end{aligned} $$
(31)

The stress-ratio and stress concentration factor due to the circular hole in a homogeneous plate can now be written as

$$ \begin{aligned} &\varSigma_{\theta z}^{\mathrm{homogeneous}}( r ) = \frac{\sigma_{\theta z}( r,\theta = 0 )}{\sigma_{\infty }} = \biggl[ 1 + \biggl( \frac{a}{r} \biggr)^{2} \biggr], \\ &\mathit{SCF}^{\mathrm{homogeneous}} = \frac{\sigma_{\theta z}( r = a,\theta = 0 )}{\sigma_{\infty }} = 2. \end{aligned} $$
(32)

The stress-ratio and stress concentration factor are depicted in Figs. 5 and 6 along with those for the radial functionally graded materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubair, D.V. Stress Concentration Factor in Functionally Graded Plates with Circular Holes Subjected to Anti-plane Shear Loading. J Elast 114, 179–196 (2014). https://doi.org/10.1007/s10659-013-9434-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-013-9434-5

Keywords

Mathematics Subject Classification

Navigation