Skip to main content
Log in

Minimum Energy Characterizations for the Solution of Saint-Venant's Problem in the Theory of Shells

  • Research Article
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The linear theory of Cosserat surfaces is employed to study Saint-Venant's problem for cylindrical shells of arbitrary cross-section. We prove minimum energy characterizations for the solution of the relaxed Saint-Venant's problem previously obtained. Then, we determine the global measures of strain appropriate to extension, bending, torsion and flexure for certain classes of solutions to the relaxed problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Naghdi, The theory of shells and plates. In: W. Flügge (ed.), Handbuch der Physik, Vol. VI a/2. Springer, Berlin (1972) pp. 425–640.

    Google Scholar 

  2. S.S. Antman, Nonlinear Problems of Elasticity, Springer, ser. Applied Mathematical Sciences 107 (1995).

  3. P.M. Naghdi and M.B. Rubin, Restrictions on nonlinear constitutive equations for elastic shells. J. Elast. 39 (1995) 133–163.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.B. Rubin, Cosserat Theories: Shells, Rods, and Points, Kluwer, Dordrecht (2000).

    MATH  Google Scholar 

  5. M.B. Rubin and Y. Benveniste, A Cosserat shell model for interphases in elastic media. J. Mech. Phys. Solids 52 (2004) 1023–1052.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. D.J. Steigmann, On the relationship between the Cosserat and Kirchhoff–Love theories of elastic shells. Math. Mech. Solids 4 (1999) 275–288.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Reissner and W.T. Tsai, Pure bending, stretching, and twisting of anisotropic cylindrical shells. J. Appl. Mech. 39 (1972) 148–154.

    MATH  Google Scholar 

  8. V. Berdichevsky, E. Armanios and A. Badir, Theory of anisotropic thin-walled closed-cross-section beams. Comp. Eng. 2 (1992) 411–432.

    Article  Google Scholar 

  9. P. Ladevèze, Ph. Sanchez and J.G. Simmonds, Beamlike (Saint-Venant) solutions for fully anisotropic elastic tubes of arbitrary cross section. Int. J. Solids Struct. 41 (2004) 1925–1944.

    Article  MATH  Google Scholar 

  10. M.L. Wenner, On torsion of an elastic cylindrical Cosserat surface. Int. J. Solids Struct. 4 (1968) 769–776.

    Article  MATH  Google Scholar 

  11. J.L. Ericksen, On St.Venant's problem for thin-walled tubes. Arch. Ration. Mech. Anal. 70 (1979) 7–12.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Ieşan, On Saint-Venant' s problem. Arch. Ration. Mech. Anal. 91 (1986) 363–373.

    MATH  Google Scholar 

  13. D. Ieşan, Saint-Venant's Problem. Lecture Notes in Mathematics, no. 1279, Springer, Berlin-Heidelberg-New York (1987).

    Google Scholar 

  14. M. Bîrsan, The solution of Saint-Venant's problem in the theory of Cosserat shells. J. Elast. 74 (2004) 185–214.

    Article  MATH  Google Scholar 

  15. M. Bîrsan, Saint-Venant's problem for Cosserat shells with voids. Int. J. Solids Struct. 42 (2005) 2033–2057.

    Article  Google Scholar 

  16. E. Sternberg and J.K. Knowles, Minimum energy characterizations of Saint-Venant's solution to the relaxed Saint-Venant's problem. Arch. Ration. Mech. Anal. 21 (1966) 89–107.

    Article  MathSciNet  Google Scholar 

  17. J.L. Ericksen, On the status of St.Venant's solutions as minimizers of energy. Int. J. Solids Struct. 16 (1980) 195–198.

    Article  MATH  MathSciNet  Google Scholar 

  18. C. Truesdell, The rational mechanics of materials – past, present, future. Appl. Mech. Rev. 12 (1959) 75–80.

    MathSciNet  Google Scholar 

  19. C. Truesdell, Some challenges offered to analysis by rational thermomechanics. In: G.M. de la Penha and L.A. Medeiros (eds.), Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North-Holland (1978).

  20. W.A. Day, Generalized torsion: The solution of a problem of Truesdell's. Arch. Ration. Mech. Anal. 76 (1981) 283–288.

    Article  MATH  Google Scholar 

  21. P. Podio-Guidugli, St.Venant formulae for generalized St.Venant problems. Arch. Ration. Mech. Anal. 81 (1983) 13–20.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Libai and J.G. Simmonds, The Nonlinear Theory of Elastic Shells, Cambridge University Press, Cambridge (1998).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea BÎrsan.

Additional information

Mathematics Subject Classifications (2000)

74K25, 74G05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BÎrsan, M. Minimum Energy Characterizations for the Solution of Saint-Venant's Problem in the Theory of Shells. J Elasticity 81, 179–204 (2005). https://doi.org/10.1007/s10659-005-9012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-005-9012-6

Key words

Navigation