Skip to main content
Log in

Biological control of Corynespora leaf fall disease in rubber by endophytic Trichoderma spp. under field conditions

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Thailand, the leading producer of rubber, is currently grappling with Corynespora leaf fall disease, a condition caused by Corynespora cassiicola (Berk. & Curt.) Wei., leading to defoliation and significant yield losses. In this context, 74 endophytic Trichoderma strains isolated from the foliage of healthy rubber trees were assessed for their antagonistic capabilities against C. cassiicola under controlled laboratory conditions. Specifically, isolates of T. atroviride (1 strain), T. asperellum (4 strains), T. hamatum (4 strains), T. harzianum (4 strains), and T. viride (2 strains) were identified based on their pronounced antagonistic potential, as determined through detached leaf and dual culture assays. These isolates were further evaluated for their disease control efficacy under greenhouse conditions. Among the evaluated Trichoderma strains, T. harzianum KUFA 0760 was observed to exhibit significant antagonistic effects in mitigating Corynespora leaf fall disease, achieving a 49.27% reduction in disease incidence tested by the detached leaf method. This was closely followed by T. asperellum KUFA 0754 and T. harzianum KUFA 0762, which suppressed disease severity by 44% and 45%, respectively. These findings warranted the selection of these strains for subsequent determination of their biocontrol efficacy against the disease under field conditions. In these trials, T. harzianum KUFA 0762 emerged as the most effective, leading to a 36–40% reduction in disease prevalence, while T. harzianum KUFA 0760 achieved a 27% reduction in disease severity. Contrastingly, the application of carbendazim was found to have the highest efficacy, resulting in a 57–59% decrease in disease incidence. Additionally, all tested Trichoderma strains demonstrated compatibility with the recommended fungicide for this disease, mancozeb, at a concentration of 3000 ppm. The outcomes of this investigation underscore the significant biocontrol potential of endophytic Trichoderma spp. against rubber tree diseases. The results advocate for the utilization of such biocontrol agents as either standalone alternatives to chemical fungicides or as part of an integrated pest management strategy, in combination with fungicidal treatments, for the effective control of Corynespora leaf fall disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrios, G. (2005). Plant pathology (5th ed.). Elsevier Academic Press.

    Google Scholar 

  • Busby, P. E., Ridout, M., & Newcombe, G. (2016). Fungal endophytes: Modifiers of plant disease. Plant Molecular Biology, 90(6), 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Chau, N. N. B., Van Minh, N., Nghiep, N. M., Vinh, N. P., Nghia, N. A., & Quoc, N. B. (2022). Identification and virulence evaluation of Corynespora cassiicola cassiicolin-encoding gene isolates from rubber trees in Vietnam. Tropical Plant Pathology, 47(3), 378–385.

    Article  Google Scholar 

  • Collinge, D. B., Jensen, B., & Jørgensen, H. J. (2022). Fungal endophytes in plants and their relationship to plant disease. Current Opinion in Microbiology, 69, 102177.

    Article  CAS  PubMed  Google Scholar 

  • Déon, M., Scomparin, A., Tixier, A., Mattos, C. R. R., Leroy, T., Seguin, M., Roeckel-Drevet, P., & Pujade-Renaud, V. (2012). First characterization of endophytic Corynespora cassiicola isolates with variant cassiicolin genes recovered from rubber trees in Brazil. Fungal Diversity, 54, 87–99.

    Article  Google Scholar 

  • De Silva, N. I., Brooks, S., Lumyong, S., & Hyde, K. D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133–148.

    Article  Google Scholar 

  • Dethoup, T., Kaewsalong, N., Songkumorn, P., & Jantasorn, A. (2018). Potential of a marine-derived species, Talaromyces tratensis KUFA 0091 against rice diseases. Biological Control, 119, 1–6.

    Article  CAS  Google Scholar 

  • Dethoup, T., Klaram, R., Pankaew, T., & Jantasorn, A. (2022). Impact of fungicides and plant extracts on biocontrol agents and side-effects of Trichoderma spp. on rice growth. European Journal of Plant Pathology, 164(4), 567–582.

    Article  CAS  Google Scholar 

  • Dou, K., Lu, Z., Wu, Q., Ni, M., Yu, C., Wang, M., Li, Y., Wang, X., Xie, H., Chen, J., & Zhang, C. (2020). MIST: A multilocus identification system for Trichoderma. Applied and Environmental Microbiology, 86, e01532-e1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando, T. H. P. S., Jayasinghe, C. K., Wijesundera, R. L. C., & Siriwardana, D. (2010). Screening of fungicides against Corynespora leaf fall disease of rubber under nursery conditions. Journal of Plant Diseases and Protection, 117(3), 117–121.

    Article  CAS  Google Scholar 

  • Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D., & Neto, D. D. (2021). Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens, 10(5), 570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Go, W. Z., Chin, K. L., H’ng, P. S., Wong, M. Y., Lee, C. L., & Khoo, P. S. (2023). Exploring the biocontrol efficacy of Trichoderma spp. against Rigidoporus microporus, the causal agent of white root rot disease in rubber trees (Hevea brasiliensis). Plants, 12, 1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabka, R., D’entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2022). Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants, 2022(11), 384. https://doi.org/10.3390/plants11030384

    Article  Google Scholar 

  • Guo, Q., Shi, L., Wang, X., Li, D., Yin, Z., Zhang, J., Ding, G., & Chen, L. (2023). Structures and Biological Activities of Secondary Metabolites from the Trichoderma genus (Covering 2018–2022). Journal of Agricultural and Food Chemistry, 71(37), 13612–13632.

    Article  CAS  PubMed  Google Scholar 

  • Guo, R., Li, G., Zhang, Z., & Peng, X. (2022). Structures and biological activities of secondary metabolites from Trichoderma harzianum. Marine drugs, 20(11), 701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaibumrung, K., Nilsalab, P., Gheewala, S. H., & Musikavong, C. (2023). Ecological footprint, water scarcity footprint, and benefit to cost ratio analysis towards sustainable rice production in Thailand. Sustainable Production and Consumption, 39, 79–92.

    Article  Google Scholar 

  • Klaram, R., Jantasorn, A., & Dethoup, T. (2022). Efficacy of marine antagonist, Trichoderma spp. as halo-tolerant biofungicide in controlling rice diseases and yield improvement. Biological Control, 172, 104985.

    Article  CAS  Google Scholar 

  • Kongcharoen, N., Kaewsalong, N., & Dethoup, T. (2020). Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand. Scientific Reports, 10(1), 16233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kongmanee, C., Ahmed, F., & Longphichai, O. (2023). Identifying farm risk management strategies of rubber farmers: A study in Southern Thailand. Australian Journal of Crop Science, 17(6), 498–506.

    Google Scholar 

  • Limdolthamand, S., Songkumarn, P., Suwannarat, S., Jantasorn, A., & Dethoup, T. (2023). Biocontrol efficacy of endophytic Trichoderma spp. in fresh and dry powder formulations in controlling northern corn leaf blight in sweet corn. Biological Control, 181, 105217.

    Article  CAS  Google Scholar 

  • Liu, X., Cao, S., Zhang, H., Wei, Y., & Pu, J. (2017). CCK1, a PMK1-type MAP kinase is required for hyphal growth, pigmentation, conidiation, enzyme activity, osmotic stress response, and pathogenicity in Corynespora cassiicola. European Journal of Plant Pathology, 149(2), 313–323.

    Article  CAS  Google Scholar 

  • Liu, X.-M., Qi, Y.-X., Zhang, X., Xie, Y.-X., Zhang, H., Wei, Y.-X., Cao, S.-W., & Pu, J.-J. (2014). Infection process of Corynespora cassiicola tagged with GFP on Hevea brasiliensis. Australasian Plant Pathology, 43(5), 523–525.

    Article  Google Scholar 

  • Manzar, N., Kashyap, A. S., Goutam, R. S., Rajawat, M. V. S., Sharma, P. K., Sharma, S. K., & Singh, H. V. (2022). Trichoderma: Advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability, 14, 12786. https://doi.org/10.3390/su141912786

    Article  CAS  Google Scholar 

  • Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento Brito, V., Lana Alves, J., Sírio Araújo, K., de Souza Leite, T., Borges de Queiroz, C., Liparini Pereira, O., & de Queiroz, M. V. (2023). Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Frontiers in Microbiology, 14, 1095199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nhien, L. T. A., Luong, N. D., Tien, L. T. T., & Luan, L. Q. (2018). Radiation synthesis of silver nanoparticles/chitosan for controlling leaf fall disease on rubber trees causing by Corynespora cassiicola. Journal of Nanomaterials, 2018, 7121549.

    Article  Google Scholar 

  • Oktavia, F. (2020). Identification and diversity analysis of cassiicolin-encoding gene of Corynespora cassiicola isolates from rubber tree in Indonesia. Biodiversitas, 21(8), 3499–3507.

    Article  Google Scholar 

  • Ogbebor, N. O., Adekunle, A. T., Eghafona, O. N., & Ogboghodo, A. I. (2015). Biological control of Rigidoporus lignosus in Hevea brasiliensis in Nigeria. Fungal Biology, 119(1), 1–6.

    Article  PubMed  Google Scholar 

  • Promwee, A., Intana, W., & Khomphet, T. (2022). Trichoderma asperellum (NST-009): A Possible Thai native antagonistic fungus for managing white root disease of rubber trees (Hevea brasiliensis). Indian Journal of Agricultural Research, 56(3), 344–350.

    Google Scholar 

  • Promwee, A., Yenjit, P., Issarakraisila, M., Intana, W., & Chamswarng, C. (2017). Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees. Journal of Plant Diseases and Protection, 124(1), 41–50.

    Article  Google Scholar 

  • Pujade-Renaud, V., Déon, M., Gazis, R., Ribeiro, S., Dessailly, F., Granet, F., & Chaverri, P. (2019). Endophytes from wild rubber trees as antagonists of the pathogen Corynespora cassiicola. Phytopathology, 109(11), 1888–1899.

    Article  CAS  PubMed  Google Scholar 

  • Raghav, D., Jyoti, A., Siddiqui, A. J., & Saxena, J. (2022). Plant-associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, challenges and strain improvement with precision approaches. Journal of Applied Microbiology, 133(2), 287–310.

    Article  CAS  PubMed  Google Scholar 

  • Reshma, T. R., Vineeth, V. K., Babu, S., & Philip, S. (2022). An exhaustive genome analysis of a virulent Indian isolate of Corynespora cassiicola, causal agent of Corynespora leaf fall (CLF) disease in Hevea brasiliensis. Journal of Plant Pathology, 104(4), 1417–1429.

    Article  Google Scholar 

  • Saldaña-Mendoza, S. A., Pacios-Michelena, S., Palacios-Ponce, A. S., Chávez-González, M. L., & Aguilar, C. N. (2023). Trichoderma as a biological control agent: Mechanisms of action, benefits for crops and development of formulations. World Journal of Microbiology and Biotechnology, 39(10), 269.

    Article  PubMed  Google Scholar 

  • Sawatraksa, N., Banterng, P., Jogloy, S., Vorasoot, N., & Hoogenboom, G. (2023). Crop model determined mega-environments for cassava yield trials on paddy fields following rice. Heliyon, 9(3), e14201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schalamun, M., & Schmoll, M. (2022). Trichoderma – genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. Frontiers in Fungal Biology, 3, 1002161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, A., Gupta, B., Verma, S., PalAkanksha, J., & Chauhan, P. (2023). Unveiling the biocontrol potential of Trichoderma. European Journal of Plant Pathology, 167(4), 569–591.

    Article  Google Scholar 

  • Sierra-Orozco, E., Sandoya, G., Lee, S., Vallad, G., & Hutton, S. (2023). Need for disease resistance breeding against Corynespora cassiicola in crops. Frontiers in Agronomy, 5, 1275906.

    Article  Google Scholar 

  • Sirikamonsathien, T., Kenji, M., & Dethoup, T. (2023). Potential of endophytic Trichoderma in controlling Phytophthora leaf fall disease in rubber (Hevea brasiliensis). Biological Control, 179, 105175.

    Article  CAS  Google Scholar 

  • Suryanto, D., Munthe, R. A., Nurwahyuni, I., & Munir, E. (2017). An assay on potential of local Trichoderma spp. to control white root rot disease caused by Rigidoporus microporus in rubber plant stump. Journal of Pure and Applied Microbiology, 11(2), 717–723.

    Article  Google Scholar 

  • Thep-On, L., Chowdhury, S., Taechato, K.-A., Kumar, A., & Chanakaewsomboon, I. (2022). Optimization of biomass fuel composition for rubber glove manufacturing in Thailand. Sustainability (switzerland), 14(19), 12493.

    Article  CAS  Google Scholar 

  • Tran, D. H., & Tran, P. D. (2019). Field efficacy of chemical fungicides on rubber leaf fall disease (Corynespora cassiicola) in central Vietnam. Research on Crops, 20(3), 611–615.

    Google Scholar 

  • Tran, D. M., Clément-Demange, A., Déon, M., Garcia, D., Le Guen, V., Clément-Vidal, A., Soumahoro, M., Masson, A., Label, P., Le, M. T., & Pujade-Renaud, V. (2017). Genetic determinism of sensitivity to Corynespora cassiicola exudates in rubber tree (Hevea brasiliensis). PLoS ONE, 11(10), e0162807.

    Article  Google Scholar 

  • Woo, S. L., Hermosa, R., Lorito, M., & Monte, E. (2023). Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews Microbiology, 21(5), 312–326.

    Article  CAS  PubMed  Google Scholar 

  • Verma, A., Shameem, N., Jatav, H. S., Sathyanarayana, E., Parray, J. A., Poczai, P., & Sayyed, R. Z. (2022). Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Frontiers in Plant Science, 13, 953836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijitrpanth, A., Jantasorn, A., & Dethoup, T. (2023). Potential and fungicidal compatibility of antagonist endophytic Trichoderma spp. from rice leaves in controlling dirty panicle disease in intensive rice farming. BioControl, 68(1), 61–73.

    Article  CAS  Google Scholar 

  • Vinale, F., & Sivasithamparam, K. (2020). Beneficial effects of Trichoderma secondary metabolites on crops. Phytotherapy Research, 34(11), 2835–2842.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Research Council of Thailand (NRCT), grant no. N41A640083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tida Dethoup.

Ethics declarations

Conflict of interest

Tida Dethoup is an editor of the European Journal of Plant Pathology. All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Highlights

• Endophytic Trichoderma demonstrated significant biocontrol capability against Corynespora leaf fall disease.

• Their application resulted in significant disease mitigation within field settings.

• These strains exhibited pronounced competitive advantages and efficacious antifungal properties.

• Endophytic Trichoderma proved to be compatible with the fungicide mancozeb.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seekham, N., Kaewsalong, N., Jantasorn, A. et al. Biological control of Corynespora leaf fall disease in rubber by endophytic Trichoderma spp. under field conditions. Eur J Plant Pathol (2024). https://doi.org/10.1007/s10658-024-02875-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10658-024-02875-4

Keywords

Navigation