Skip to main content
Log in

Biofumigation with Brassica seed-based products combined with calcium carbonate to control Phytophthora cinnamomi root rot in cork and holm oaks

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The root rot of holm and cork oaks caused by Phytophthora cinnamomi is one of the main phytosanitary problems in dehesas and montados, open woodlands of the Southern Iberian Peninsula. Biofumigation with seed meals rich in sinigrin is a promising technique to diminish the impact of this disease, but verification of its effectiveness is necessary before applying it in the field. The effectiveness to reduce sporangial production of P. cinnamomi and to control disease in holm and cork oak plants of biofumigation with non-defatted seed meal of Brassica juncea and pellets of defatted seed meal of Brassica carinata, combined or not with calcium carbonate, was tested in experimental conditions. The combinations of biofumigant materials and CaCOin vitro experiments were more effective in reducing the production of sporangia than the application separately, even with high doses of biofumigants. In plant experiments, none of the treatments significantly reduced disease symptoms in holm oak plants. In cork oak plants, the most effective treatment was seed meal of B. juncea (1.34 g L−1 of substrate) combined with CaCO3 (1.5 g L−1of substrate), although treatments with both doses of B. juncea seed meal (1.34 and 2.68 g L−1 of substrate) and with pellets of B. carinata (1.5 g L−1 of substrate) combined with CaCO3 (1.5 g L−1 of substrate) also significantly reduced root symptom severity in contrast with the inoculated control. Biofumigation with B. juncea seed meal or with B. carinata pellets, combined with the application of CaCO3 can be a tool to integrate control strategies into the disease in the dehesas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angus, J. F., Gardner, P. A., Kirkegaard, J. A., & Desmarchelier, J. M. (1994). Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant and Soil, 162, 107–112.

    CAS  Google Scholar 

  • Blaker, N. S., & McDonald, J. D. (1983). Influence of container medium pH on sporangium formation, zoospore release, and infection of Rhododendron by Phytophthora cinnamomi. Plant Disease, 67, 259–263.

    Google Scholar 

  • Borek, V., Morra, M. J., Brown, P. D., & McCaffrey, J. P. (1994). Allelochemicals produced during sinigrin decomposition in soil. Journal of Agriculture and Food Chemistry, 42(4), 1030–1034.

    CAS  Google Scholar 

  • Borek, V., Morra, M. J., Brown, P. D., & McCaffrey, J. P. (1995). Transformation of the glucosinolate-derived allelochemicals allyl isothiocyanate and allylnitrile in soil. Journal of Agriculture and Food, 43(7), 1935–1940.

    CAS  Google Scholar 

  • Brasier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annals of Forest Science, 53, 347–358.

    Google Scholar 

  • Brasier, C. M., Robredo, F., & Ferraz, J. F. (1993). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42(1), 140–145.

    Google Scholar 

  • Brown, P. D., & Morra, M. J. (1997). Control of soil-borne plant pests using glucosinolate-containing plants. Advances in Agronomy, 61, 167–231.

    CAS  Google Scholar 

  • Byrt, P. N., Irving, H. R., & Grant, B. R. (1982). The effect of cations on zoospores of the fungus Phytophthora cinnamomi. Journal of General Microbiololy, 128, 1189–1198.

    CAS  Google Scholar 

  • Campanella, V., Ippolito, A., & Nigro, F. (2002). Activity of calcium salts in controlling Phytophthora root rot of citrus. Crop Protection, 21, 751–756.

    CAS  Google Scholar 

  • Chee, K., & Newhook, F. J. (1965). Variability in Phytophthora cinnamomi Rands. New Zealand Journal of Agricultural Research, 8(1), 96–103.

    Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Fernández-Habas, J., Fernández-Rebollo, P., Rivas Casado, M., García Moreno, A. M., & Abellanas, B. (2019). Spatio-temporal analysis of oak decline process in open woodlands: A case study in SW Spain. Journal of Environmental Management, 248, 109308. https://doi.org/10.1016/j.jenvman.2019.109308.

    Article  PubMed  Google Scholar 

  • Gil, V., & MacLeod, A. J. (1980). The effects of pH on glucosinolate degradation by a thioglucoside glucohydrolase preparation. Phytochemistry, 19, 2547–2255.

    CAS  Google Scholar 

  • Gimsing, A. L., & Kirkegaard, J. A. (2009). Glucosinolates and biofumigation: Fate of glucosinolates and their hydrolysis products in soil. Phytochemistry Reviews, 8, 299–310.

    CAS  Google Scholar 

  • Gimsing, A. L., Strobel, B. W., & Hansen, H. C. B. (2009). Degradation and sorption of 2-propenyl and benzyl isothiocyanate in soil. Environmental Toxicology and Chemistry, 28, 1178–1184.

    CAS  PubMed  Google Scholar 

  • Hill, A. E., Grayson, D. E., & Deacon, J. W. (1998). Suppressed germination and early death of Phytophthora infestans sporangia caused by pectin, inorganic phosphate, ion chelators and calcium-modulating treatments. European Journal of Plant Pathology, 104, 367–376.

    CAS  Google Scholar 

  • Hüberli, D., Tommerup, I. C., & Hardy, G. E. S. (2000). False-negative isolations or absence of lesions may cause mis-diagnosis of diseased plants infected with Phytophthora cinnamomi. Australasian Plant Pathology, 29, 164–169.

    Google Scholar 

  • Kirkegaard, J. A., Gardner, J., Desmarchelier, J. M., & Angus, J. F. (1993). Biofumigation using Brassica species to control pest and diseases in horticulture and agriculture. In N. Wrather & R. J. Mailes (Eds.), Proceedings of 9th Australian research assembly on Brassicas (pp. 77–82). Australia: Wagga Wagga.

    Google Scholar 

  • Lazzeri, L., Leoni, O., & Manici, L. M. (2004). Biocidal plant dried pellets for biofumigation. Industrial Crops and Products, 20, 59–65.

    CAS  Google Scholar 

  • Lazzeri, L., Leoni, O., Manici, L.M., Palmieri, S., Patalano & G. (2008). Use of seed flour as soil pesticide. European Patent Register EP1530421B1. European Patent Office. International publication number: WO 2004/017739.

  • Lazzeri, L., Leoni, O., Manici, L.M., Palmieri, S. & Patalano, G. (2010). Use of seed flour as soil pesticide. United States Patent US 7291497 B2. United States Patent and Trademark Office. PCT Pub. No.: WO 2004/017739 A1

  • Lazzeri, L., D’Avino, L., Ugolini, L., De Nicola, G.R., Cinti, S., Malaguti, L., et al. (2011). Bio-based products from Brassica carinata A. Braun oils and defatted meals by a second generation biorefinery approach. In: ETA-Florence Renewable Energies (Ed.), Proceedings of the 19th European Biomass Conference and Exhibition (pp. 1080–1092). Florence: ETA-Florence Renewable Energies.

  • León, I., García, J. J., Fernández, M., Vázquez-Piqué, J., & Tapias, R. (2017). Differences in root growth of Quercus ilex and Quercus suber seedlings infected with Phytophthora cinnamomi. Silva Fennica. https://doi.org/10.14214/sf.6991.

  • Matthiessen, J. N., & Kirkegaard, J. A. (2006). Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, 25, 235–265.

    CAS  Google Scholar 

  • Mazzola, M., & Zhao, X. (2010). Brassica juncea seed meal particle size influences chemistry but not soil biology-based suppression of individual agents inciting apple replant disease. Plant and Soil, 337, 313–324.

    CAS  Google Scholar 

  • Menge, J. A., Ohr, H. D., Johnson, E. L. V., Campbell, S., Guillemet, F., Grech, N., et al. (1994). The effect of mulches, gypsum and fungicides on the performance of avocado planted in soil with Phytophthora cinnamomi and Phytophthora citricola. Phytopathology, 84, 1103 (abstr.).

    Google Scholar 

  • Messenger, B., Menge, J. A., & Pond, E. (2000). Effects of gypsum on zoospores and sporangia of Phytophthora cinnamomi in field soil. Plant Disease, 84, 617–621.

    CAS  PubMed  Google Scholar 

  • Morales-Rodríguez, C., Vettraino, A. M., & Vannini, A. (2016). Efficacy of biofumigation with Brassica carinata commercial pellets (BioFence®) to control vegetative and reproductive structures of Phytophthora cinnamomi. Plant Disease, 100, 324–330.

    PubMed  Google Scholar 

  • Moreno, G., & Pulido, F. J. (2009). The functioning, management and persistence of Dehesas. In A. Regueiro-Rodríguez et al. (Eds.), Agroforestry in Europe: Current status and future prospects (pp. 127–160). Dordrecht: Springer.

    Google Scholar 

  • Morra, M. J., & Kirkegaard, J. A. (2002). Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biology and Biochemistry, 34, 1683–1690.

    CAS  Google Scholar 

  • Motisi, N., Monfort, F., Dore, T., Romillac, N., & Lucas, P. (2009). Duration of control of two soilborne pathogens following incorporation of above- and below-ground residues of Brassica juncea into soil. Plant Patholology, 58, 470–478.

    Google Scholar 

  • Mulvaney, R. L. (1996). Nitrogen – inorganic forms. In D. L. Sparks et al. (Eds.), Methods of soil analysis: Part 3 chemical methods, 5.3. (pp. 1123–1184). Madison: ASA, CSSA, SSSA Books.

    Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    CAS  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page et al. (Eds.), Methods of soil analysis, part 2, 2nd edn, Agron Monogr 9 (pp. 403–430). Madison: ASA and ASSA.

    Google Scholar 

  • Price, A. J., Charron, C. S., Saxton, A. M., & Sams, C. E. (2005). Allyl isothiocyanate and carbon dioxide produced during degradation of Brassica juncea tissue in different soil conditions. Hortscience, 40, 1734–1739.

    CAS  Google Scholar 

  • Ríos, P., Obregón, S., De-Haro, A., Fernández-Rebollo, P., Serrano, M. S., & Sánchez, M. E. (2016). Effect of Brassica biofumigant amendments on different stages of the life cycle of Phytophthora cinnamomi. Journal of Phytopathology, 164(9), 582–594.

    Google Scholar 

  • Ríos, P., González, M., Obregón, S., Carbonero, M. D., Leal, J., Fernández, P., et al. (2017). Brassica-based seed meal biofumigation to control Phytophthora cinnamomi in the Spanish “dehesa” oak trees. Phytopathologia Mediterranea, 56(3), 392–399.

    Google Scholar 

  • Robin, C., & Desprez-Loustau, M. L. (1998). Testing variability in pathogenicity of Phytophthora cinnamomi. European Journal of Plant Pathology, 104(5), 465–475.

    Google Scholar 

  • Rodríguez-Molina, M. C., Santiago Merino, R., Blanco Santos, A., Pozo Quintanilla, J. D., Colino Nevado, M. I., Palo Núñez, E. J., et al. (2003). Detección de Phytophthora cinnamomi en dehesas de Extremadura afectadas por “seca” y su comportamiento in vitro. Boletín de Sanidad Vegetal Plagas, 29(4), 627–640.

    Google Scholar 

  • Rodríguez-Molina, M. C., Blanco-Santos, A., Palo-Núñez, E. J., Torres-Vila, L. M., Torres-Álvarez, E., & Suárez-de-la-Cámara, M. A. (2005). Seasonal and spatial mortality patterns of olm oak seedlings in a reforested soil infected with Phytophthora cinnamomi. Forest Pathology, 35, 411–422.

    Google Scholar 

  • Romero, M. A., Sánchez, J. E., Jiménez, J. J., Belbahri, L., Trapero, A., Lefort, F., et al. (2007). New Pythium taxa causing root rot on mediterranean Quercus species in South-West Spain and Portugal. Journal of Phytopathology, 155, 289–295.

    Google Scholar 

  • Rosa, E. A. S., Heaney, R. K., Fenwick, G. R., & Portas, C. A. M. (1997). Glucosinolates in crop plants. Horticultural Reviews, 19, 99–215.

    CAS  Google Scholar 

  • Sánchez, M. E., Muñoz, M., Brasier, C. M., & Trapero, A. (2001). Identity and pathogenicity of two Phytophthora taxa associated with a new root disease of olive trees. Plant Disease, 85, 411–416.

    Google Scholar 

  • Sánchez, M. E., Andicoberry, S., & Trapero, A. (2005). Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. Forest Pathology, 35, 115–125.

    Google Scholar 

  • Sánchez, M. E., Caetano, P., Romero, M. A., Navarro, R. M., & Trapero, A. (2006). Phytophthora root rot as the main factor of oak decline in southern Spain. In C. Brasier, T. Jung, & W. Oßwald (Eds.), Progress in research on Phytophthora diseases of forest trees (pp. 149–154). Farnham: Forest Research.

    Google Scholar 

  • Serrano, M. S., De Vita, P., Fernández-Rebollo, P., & Sánchez Hernández, M. E. (2012). Calcium fertilizers induce soil suppressiveness to Phytophthora cinnamomi root rot of Quercus ilex. European Journal of Plant Pathology, 132, 271–279.

    CAS  Google Scholar 

  • Serrano, M., Ríos, P., González, M., & Sánchez, M. E. (2015). Experimental minimum threshold for Phytophthora cinnamomi root disease expression on Quercus suber. Phytopathologia Mediterranea, 54, 461–464.

    Google Scholar 

  • Serrano-Pérez, P., Palo, C., & Rodríguez-Molina, M. C. (2017). Efficacy of Brassica carinata pellets to inhibit mycelial growth and chlamydospores germination of Phytophthora nicotianae at different temperature regimes. Scientia Horticulturae, 216, 126–133.

    Google Scholar 

  • Trione, E. J. (1974). Sporulation and germination of Phytophthora lateralis. Phytopathology, 64, 1531–1533.

    Google Scholar 

  • Tuset, J. J., Hinarejos, C., Mira, J. L., & Cobos, J. M. (1996). Implicación de Phytophthora cinnamomi Rands en la enfermedad de la “seca” de encinas y alcornoques. Boletín de Sanidad Vegetal, Plagas, 22, 491–499.

    Google Scholar 

  • Van Etten, C. H., & Tookey, H. L. (1979). Chemistry and biological effects of glucosinolates. In G. A. Rosenthal & D. H. Janzen (Eds.), Herbivores: Their interaction with secondary plant metabolites (pp. 471–500). New York: Academic Press.

    Google Scholar 

  • Von Broembsen, S. L., & Deacon, J. W. (1997). Calcium interference with zoospore biology and infectivity of Phytophthora parasitica in nutrient irrigation solution. Phytopathology, 87, 522–528.

    Google Scholar 

  • Walkley, A. J., & Black, I. A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, 29–38.

    CAS  Google Scholar 

  • Yeo, J. R., Weiland, J. E., Sullivan, D. M., & Bryla, D. R. (2017). Nonchemical, cultural management strategies to suppress Phytophthora root rot in northern highbush blueberry. HortScience, 52(5), 725–731.

    CAS  Google Scholar 

Download references

Funding and acknowledgments

This research was supported by INIA project RTA2014-00063-C04, Research Group AGA001 (GR18196) of Junta de Extremadura and FEDER funds. The authors wish to thank to Eloy Palo and Yolanda Maya for their technical assistance and to Simon Exelby for reviewing the English language quality.

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design were performed by María del Carmen Rodríguez-Molina and Pilar Fernández-Rebollo. All authors contributed to material preparation, data collection and analysis. The first draft of the manuscript was written by María del Carmen Rodríguez-Molina and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to María Carmen Rodríguez-Molina.

Ethics declarations

Conflict of interest/competing interests

The authors declare that they have no conflict of interest.

Human participants and/or animals

This article does not contain any studies with human or animals.

Ethics approval

The authors declare that they have followed the guidelines of Committee on Publication Ethics (COPE) and obeyed all the Ethical Standards requested by EJPP.

Consent for publication

All authors consent to this submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Molina, M., Fernández-Rebollo, P., Serrano-Pérez, P. et al. Biofumigation with Brassica seed-based products combined with calcium carbonate to control Phytophthora cinnamomi root rot in cork and holm oaks. Eur J Plant Pathol 159, 471–483 (2021). https://doi.org/10.1007/s10658-020-02175-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02175-7

Keywords

Navigation