Skip to main content
Log in

Current status on the molecular biology of zearalenone: its biosynthesis and molecular detection of zearalenone producing Fusarium species

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Zearalenone (ZEN) is a mycotoxin produced by some species of Fusarium, especially by Fusarium graminearum and F. culmorum. It is a significant contaminant of maize, barley, wheat and other cereals. ZEN is implicated in reproductive problems in experimental animals and livestock and is classified as a non-steroidal estrogen or mycoestrogen. The carcinogenicity, genotoxicity, hepatotoxicity, haematotoxicity and immunotoxicity of ZEN were also reported. ZEN is biosynthesized from acetate-polymalonate pathway leading to nonaketide precursor which then subjected to different cyclizations and modifications. At the molecular level, a 50 kb gene cluster containing 11 genes was previously identified in F. graminearum. But ZEN biosynthesis is limited to four genes within this cluster: two polyketide synthase genes PKS4 and PKS13, gene similar to isoamyl alcohol oxidase (ZEB1) and a regulatory protein gene (ZEB2). This review covers the updated information concerning the molecular biology of ZEN biosynthesis as well as the proposed mechanism of its biosynthetic pathway. We also report the molecular regulation of its biosynthesis. Moreover, molecular methods developed for the specific detection and quantification of ZEN producing species are detailed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abe, Y., Suzuki, T., Ono, C., Iwamoto, K., Hosobuchi, M., & Yoshikawa, H. (2002). Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Molecular Genetics and Genomics, 267, 636–646.

  • Alexander, J., Autrup, H., Bard, D., Carere, A., Costa, L. G., Cravedi, J.-P., Alessandro Di Domenico, R. F., et al. (2004). Opinion of the scientific panel on contaminants in the food chain [CONTAM]related to Zearalenone as undesirable substance in animal feed. EFSA Journal, 2(8), 1–35. https://doi.org/10.2903/j.efsa.2004.89.

    Article  Google Scholar 

  • Ammar, G. A., Tryono, R., Döll, K., Karlovsky, P., Deising, H. B., & Wirsel, S. G. R. (2013). Identification of ABC transporter genes of Fusarium graminearum with roles in azole tolerance and/or virulence. PLoS One, 8(11), 1–13. https://doi.org/10.1371/journal.pone.0079042.

  • Atoui, A., Mathieu, F., & Lebrihi, A. (2007). Targeting a polyketide synthase gene for Aspergillus carbonarius quantification and ochratoxin A assessment in grapes using realtime PCR. Journal of Food Microbiology, 115, 313–318.

  • Atoui, A., El Khoury, A., Kallassy, M., & Lebrihi, A. (2012). Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. Journal of Food Microbiology, 154(1), 59–65.

  • Baker, S. E., Kroken, S., Inderbitzin, P., Asvarak, T., Li, B. Y., Shi, L., Yoder, O. C., & Turgeon, B. G. (2006). Two polyketide synthase-encoding genes are required for biosynthesis of the polyketide virulence factor, T-toxin, by Cochliobolus heterostrophus. Molecular Plant-Microbe Interactions, 19, 139–149.

  • Becher, R., Weihmann, F., Deising, H. B., & Wirsel, S. G. R. (2011). Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics, 12, 1–17. https://doi.org/10.1186/1471-2164-12-52.

  • Bennett, J. W., Klich, M., & Mycotoxins, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497–516. https://doi.org/10.1128/CMR.16.3.497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackwell, B. A., Greenhalgh, R., & Miller, J. D. (1985). 13C NMR study of the biosynthesis of toxins by Fusarium graminearum. Journal of Biological Chemistry, 260(7), 4243–4247.

  • Borzekowski, A., Drewitz, T., Keller, J., Pfeifer, D., Kunte, H. J., Koch, M., Rohn, S., & Maul, R. (2018). Biosynthesis and characterization of zearalenone-14-sulfate, zearalenone-14-glucoside and zearalenone-16-glucoside using common fungal strains. Toxins, 10(3), 1–15. https://doi.org/10.3390/toxins10030104.

    Article  CAS  Google Scholar 

  • Bottalico, A., Visconti, A., Logrieco, A., Solfrizzo, M., & Mirocha, C. J. (1985). Occurrence of zearalenols (diastereomeric mixture) in corn stalk rot and their production by associated Fusarium species. Applied and Environmental Microbiology, 49(3), 547–551.

  • Caglayan, M. O., Şahin, S., & Üstündağ, Z. (2020). Detection strategies of Zearalenone for food safety: a review. Critical Reviews in Analytical Chemistry, 1–20. https://doi.org/10.1080/10408347.2020.1797468.

  • Campbell, C. D., & Vederas, J. C. (2010). Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolmers, 93(9), 755–763.

    Article  CAS  Google Scholar 

  • Changwa, R., Abia, W., Msagati, T., Nyoni, H., Ndleve, K., & Njobeh, P. (2018). Multi-mycotoxin occurrence in dairy cattle feeds from the Gauteng province of South Africa: a pilot study using UHPLC-QTOF-MS/MS. Toxins, 10(7). https://doi.org/10.3390/toxins10070294.

  • Choi, J., Jung, W. H., & Kronstad, J. W. (2015). The cAMP/protein kinase A signaling pathway in pathogenic basidiomycete fungi: connections with iron homeostasis. Journal of Microbiology, 53(9), 579–587.

    Article  CAS  Google Scholar 

  • Clay, A. T. K., & Stroud, R. M. (2006). The structure of a Ketoreductase determines the Organization of the Carbon Processing Enzymes of modular Polyketide synthases. Structure, 14(4), 737–748.

    Article  Google Scholar 

  • Dao, H. P., Mathieu, F., Lebrihi, A., Dao, H. P., Mathieu, F., & Lebrihi, A. (2005). Two primer pairs to detect OTA producers by PCR method. International Journal of Food Microbiology, 104(1), 61–67.

    Article  CAS  Google Scholar 

  • Dawidziuk, A., Koczyk, G., Popiel, D., Kaczmarek, J., & Busko, M. (2014). Molecular diagnostics on the toxigenic potential of Fusarium spp. plant pathogens. Journal of Applied Microbiology, 116(16), 1607–1620.

  • European Commission Regulation. (2006). Commission Regulation (EC) No. 1881/2006 of 19 December 2006. Official Journal of the European Union, 364, 5–24.

  • European Commission Recommendation. (2016). Commission recommendation (EU) 2016/1319 of 29 July 2016 amending recommendation 2006/576/EC as regards deoxynivalenol, zearalenone and ochratoxin A in pet food. Official Journal of the European Union, 208, 58–60.

  • Fujii, I., Watanabe, A., & Ebizuka, Y. (2004). More functions for multifunctional Polyketide synthases. In J. S. Tkacz & L. Lange (Eds.), Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine (pp. 97–125). New York: Kluwer Academic/Plenum.

  • Gaffoor, I., & Trail, F. (2006). Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Applied and Environmental Microbiology, 72(3), 1793–1799.

  • Golinski, P., Vesonder, R., Latus-Zietkiewicz, D., & Perkowski, J. (1988). Formation of fusarenone X, nivalenol, zearalenone, α -trans-zearalenol, ß-trans-zearalenol, and fusarin C by Fusarium crookwellense. Applied and Environmental Microbiology, 54(8), 2147–2148.

  • Guldener, U., Mannhaupt, G., Munsterkotter, M., Haase, D., Oesterheld, M., Stumpflen, V., Mewes, H. W., & Adam, G. (2006). FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum. Nucleic Acids Research, 34, 456–458.

  • Hagler, W. M., & Mirocha, C. J. (1980). Biosynthesis of [14C]zearalenone from [1–14C]acetate by Fusarium roseum ‘Gibbosum’. Applied and Environmental Microbiology, 39(3), 668–670.

  • Hertweck, C. (2009). The biosynthetic logic of polyketide diversity. Angewandte Chemie International Edition, 48(26), 4688–4716.

    Article  CAS  Google Scholar 

  • Hidy, P. H., Baldwin, R. S., Greasham, R. L., Keith, C. L., & McMullen, J. R. (1977). Zearalenone and some derivatives: production and biological activities. Advances in Applied Microbiology, 22, 59–82.

    Article  CAS  Google Scholar 

  • Huffman, J., Gerber, R., & Du, L. (2010). Recent advancements in the biosynthetic mechanisms for Polyketide-derived Mycotoxins. Biopolymers, 93(9), 764–776.

    Article  CAS  Google Scholar 

  • Ji, F., He, D., Olaniran, A. O., Mokoena, M. P., Xu, J., & Shi, J. (2019). Occurrence, toxicity, production and detection of Fusarium mycotoxin: a review. Food Production, Processing and Nutrition, 1(1), 1–14. https://doi.org/10.1186/s43014-019-0007-2.

  • Jiang, J., Liu, X., Yin, Y., & Ma, Z. (2011). Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLoS One, 6(11), e28291.

  • Kennedy, J., Auclair, K., Kendrew, S. G., Park, C., Vederas, J. C., & Hutchinson, C. (1999). Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science, 284, 1368–1372.

    Article  CAS  Google Scholar 

  • Kim, Y. T., Lee, Y. R., Jin, J. M., Han, K. H., Kim, H., Kim, J. C., et al. (2005). Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae. Molecular Microbiology, 58(4), 1102–1113.

  • Kim, H.-K., Lee, S., Jo, S.-M., McCormick, S. P., Butchko, R. A. E., Proctor, R. H., & Yun, S.-H. (2013). Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum. PLoS One, 8(7), e68441.

  • Kim, J. E., Son, H., & Lee, Y. W. (2018). Biosynthetic mechanism and regulation of zearalenone in Fusarium graminearum. JSM Mycotoxins, 68(1), 1–6.

  • Knutsen, H. K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., et al. (2017). Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal, 15(7), e04851. https://doi.org/10.2903/j.efsa.2017.4851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroken, S., Glass, N. L., Taylor, J. W., Yoder, O. C., & Turgeon, B. G. (2003). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proceedings of the National Academy of Sciences of the United States of America, 100(2), 15670–15675.

    Article  CAS  Google Scholar 

  • Kuiper, G. G. J. M., Lemmen, J. G., Carlsson, B., Corton, J. C., Safe, S. H., Van der Saag, P. T., Van der Burg, B., & Gustafsson, J. A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor ß. Endocrinology, 139(10), 4252–4263.

    Article  CAS  Google Scholar 

  • Lee, J., Myong, K., Kim, J.-E., & Kim, H.-K. (2012). FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. Micobiology, 158(7), 1723–1733.

  • Linnemannstöns, P., Schulte, J., del Mar Prado, M., Proctor, R. H., Avalos, J., & Tudzynski, B. (2002). The polyketide synthase gene pks4 from Gibberella fujikuroi encodes a key enzyme in the biosynthesis of the red pigment bikaverin. Fungal Genetics and Biology, 37(2), 134–148.

  • Liu, L., Zhang, Z., Shao, C. L., & Wang, C. Y. (2017). Analysis of the sequences, structures, and functions of product-releasing enzyme domains in fungal polyketide synthases. Frontiers in Microbiology, 8(SEP), 1–13. https://doi.org/10.3389/fmicb.2017.01685.

  • Lysøe, E., Klemsdal, S. S., Bone, K. R., Rasmus, J. N., Frandsen, T. J., Thrane, U., & Giese, H. (2006). The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Applied and Environmental Microbiology, 72(6), 3924–3932.

  • Lysøe, E., Bone, K. R., & Klemsdal, S. S. (2009). Real-time quantitative expression studies of the zearalenone biosynthetic gene cluster in Fusarium graminearum. Phytopathology, 99(2), 176–184.

  • Maragos, C. (2010). Zearalenone occurrence and human exposure. World Mycotoxin Journal, 3, 369–383.

    Article  CAS  Google Scholar 

  • Meng, K., Wang, Y., Yang, P., Luo, H., Bai, Y., Shi, P., Yuan, T., Ma, R., & Yao, B. (2010). Rapid detection and quantification of zearalenone-producing Fusarium species by targeting the zearalenone synthase gene PKS4. Food Control, 21(2), 207–211. https://doi.org/10.1016/j.foodcont.2009.05.014.

  • Merhej, J., Urban, M., Dufresne, M., Barreau, K., et al. (2012). The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Molecular Plant Pathology, 13(4), 363–374.

  • Mewes, H. W., Amid, C., Arnold, R., Frishman, D., Güldener, U., Mannhaupt, G., et al. (2004). MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research, 32, D41–D44.

    Article  CAS  Google Scholar 

  • Mirocha, C. J., & Pathre, S. V. (1979). Mycotoxins—Their biosynthesis in fungi—Zearalenone biosynthesis. Journal of Food Protection, 42, 821–824.

    Article  CAS  Google Scholar 

  • Niessen, L. (2007). PCR-based diagnosis and quantification of mycotoxin producing fungi. International Journal of Food Microbiology, 119(1), 38–46.

    Article  CAS  Google Scholar 

  • Park, A. R., Son, H., Min, K., Park, J., Goo, J. H., Rhee, S., Chae, S. K., & Lee, Y. W. (2015). Autoregulation of ZEB2 expression for zearalenone production in Fusarium graminearum. Molecular Microbiology, 97(5), 942–956.

  • Park, A. R., Fu, M., Shin, J. Y., Son, H., & Lee, Y.-W. (2016). The protein kinase A pathway regulates zearalenone production by modulating alternative ZEB2 transcription. Journal of Microbiology and Biotechnology, 26(5), 967–974.

    Article  CAS  Google Scholar 

  • Proctor, R. H., Desjardins, A. E., Plattner, R. D., & Hohn, T. M. (1999). A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genetics and Biology, 27(1), 100–112.

  • Qi, P. F., Zhang, Y. Z., Liu, C. H., Zhu, J., Chen, Q., Guo, Z. R., Wang, Y., Xu, B. J., Zheng, T., Jiang, Y. F., Wang, J. P., Zhou, C. Y., Feng, X., Kong, L., Lan, X. J., Jiang, Q. T., Wei, Y. M., & Zheng, Y. L. (2018). Fusarium graminearum ATP-binding cassette transporter gene FgABCC9 is required for its transportation of salicylic acid, fungicide resistance, mycelial growth and pathogenicity towards wheat. International Journal of Molecular Sciences, 19(8). https://doi.org/10.3390/ijms19082351.

  • Richardson, K., Hagler, W., & Mirocha, C. (1985). Production of zearalenone a- and b-zearalenol and a- and b-zearalanol by Fusarium spp. in rice culture. Journal of Agricultural and Food Chemistry, 33, 962–866.

    Article  Google Scholar 

  • Rogowska, A., Pomastowski, P., Sagandykova, G., & Buszewski, B. (2019). Zearalenone and its metabolites: effect on human health, metabolism and neutralisation methods. Toxicon, 162(February), 46–56. https://doi.org/10.1016/j.toxicon.2019.03.004.

    Article  CAS  PubMed  Google Scholar 

  • Schneweis, I., Meyer, K., Engelhardt, G., & Bauer, J. (2002). Occurrence of Zearalenone-4- - D -glucopyranoside in wheat. Journal of Agricultural and Food Chemistry, 50, 1736–1738.

    Article  CAS  Google Scholar 

  • Schollenberger, M., Muller, H. M., Rufle, M., Suchy, S., Planck, S., & Drochner, W. (2006). Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. International Journal of Food Microbiology, 97, 31–326.

  • Sebaei, A. S., Gomaa, A. M., Mohamed, G. G., & El-Dien, F. A. N. (2012). Simple validated method for determination of Deoxynivalenol and Zearalenone in some cereals using high performance liquid chromatography. American Journal of Food Technology, 7, 668–678.

    Article  CAS  Google Scholar 

  • Shimizu, K., & Keller, N. (2001). Genetic involvement of a cAMP dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics, 157(2), 591–600.

  • Sim, J. H., Tian, F., Jung, S. Y., Auh, J.-H., & Chun, H. S. (2018). Multiplex polymerase chain reaction assays for the detection of the zearalenone chemotype of Fusarium species in white and brown rice. International Journal of Food Microbiology, 269, 120–127.

  • Studt, L., Humpf, H.-U., & Tudzynski, B. (2013). Signaling governed by G proteins and cAMP is crucial for growth, secondary metabolism and sexual development in Fusarium fujikuroi. PLoS One, 8(2), e58185.

  • Tiemann, U., Tomek, W., Schneide, F., & Vanselow, J. (2003). Effects of the mycotoxins α - and ß-zearalenol on regulation of progesterone synthesis in cultured granulosa cells from porcine ovaries. Reproductive Toxicology, 17, 673–681.

    Article  CAS  Google Scholar 

  • Ugai, T., Minami, A., Fujii, R., Tanaka, M., Oguri, H., Gomib, K., & Oikawa, H. (2015). Heterologous expression of highly reducing polyketide synthase involved in betaenone biosynthesis. Chemical Communications, 51, 1878–1881.

    Article  CAS  Google Scholar 

  • Urry, W. H., Wehrmeister, H. L., Hodge, E. B., & Hidy, P. H. (1966). The structure of zearalenone. Tetrahedron Letters, 27, 3109–3114.

    Article  Google Scholar 

  • Wang, H., Jin, J., Wu, J., Qu, H., Wu, S., & Bao, W. (2019). Transcriptome and chromatin accessibility in porcine intestinal epithelial cells upon Zearalenone exposure. Scientific Data, 6(1), 298. https://doi.org/10.1038/s41597-019-0313-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, C., & Townsend, C. (2002). Initial characterization of a type I fatty acid synthase and polyketide synthase multienzyme complex NorS in the biosynthesis of aflatoxin B1. Chemistry & Biology, 9, 981–988.

    Article  CAS  Google Scholar 

  • Watanabe, A., Fujii, I., Sankawa, U., Mayorga, M. E., Timberlake, W. E., & Ebizuka, Y. (1999). Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Letters, 40(1), 91–94.

  • Yang, G., Rose, M. S., Turgeon, B. G., & Yoder, O. C. (1996). A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell, 8(11), 21390–21350.

    Google Scholar 

  • Yu, H.-Y., Seo, J.-A., Kim, J.-E., Han, K.-H., Shim, W.-B., Yun, S.-H., & Lee, Y.-W. (2008). Functional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae. Microbiology, 154(2), 391–401.

  • Yu, X., Liu, H., Niu, X., Akhberdi, O., Wei, D., Wang, D., & Zhu, X. (2017). The Gα1-cAMP signaling pathway controls conidiation, development and secondary metabolism in the taxol-producing fungus Pestalotiopsis microspora. Microbiological Research, 203, 29–39.

  • Zhang, G.-L., Feng, Y.-L., Song, J.-L., & Zhou, X.-S. (2018). Zearalenone: a Mycotoxin with different toxic effect in domestic and laboratory animals’ Granulosa cells. Frontiers in Genetics, 9(December), 1–8. https://doi.org/10.3389/fgene.2018.00667.

    Article  CAS  Google Scholar 

  • Zinedine, A., Soriano, J. M., Moltò, J. C., & Magňes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an estrogenic mycotoxin. Food and Chemical Toxicology, 45, 1–18.

    Article  CAS  Google Scholar 

  • Zwierzchowski, W., Przybylowicz, M., Obremski, K., Zielonka, Ł., Skorska-Wyszynska, E., Gajecka, M., et al. (2005). Level of zearalenone in blood serum and lesions in ovarian follicles of sexually immature gilts in the course of zearalenone micotoxicosis. Polish Journal of Veterinary Sciences, 8(3), 209–218.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review paper is based upon work supported by the Lebanese University through a grant 5531/4.

Funding

This review paper is based upon work supported by the Lebanese University through a grant 5531/4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Atoui.

Ethics declarations

Conflicts of interest/competing interests

The authors declare no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All authors reviewed the manuscript and approved its submission.

Consent for publication

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahle, S., El Khoury, A. & Atoui, A. Current status on the molecular biology of zearalenone: its biosynthesis and molecular detection of zearalenone producing Fusarium species. Eur J Plant Pathol 159, 247–258 (2021). https://doi.org/10.1007/s10658-020-02173-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02173-9

Keywords

Navigation