Skip to main content
Log in

Potential of Fusarium sacchari-tolerant mutants in controlling Eldana saccharina and borer-associated Fusarium stem rot in sugarcane

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Some Fusarium spp. such as F. sacchari PNG40, found in association with the African sugarcane stalk borer Eldana saccharina, have potential in biological control against the insect. However, Fusarium can cause stem rot in sugarcane thereby constraining its application. The present study tested the usefulness of F. sacchari PNG40 tolerant sugarcane mutants in the control of Fusarium stem rot and E. saccharina using endophytic F. sacchari PNG40. In vitro mutagenesis and selection of embryogenic calli (cultivar N41) were employed to produce F. sacchari-tolerant mutants. Stalks of 8 months-old N41 mutants and previously-produced NCo376 mutants were inoculated with PNG40 and then with E. saccharina 2nd instar larvae after 3 weeks. Length bored was 36–82 % less in inoculated stalks (1.00–4.67 cm) of the NCo376 and N41 mutants and their respective parents than their uninoculated controls (3.83–8.67 cm). Mass gain was significantly less in larvae retrieved from incubated stalks (0.028–0.045 g) of MutA and MutE of NCo376, and Mut1 and Mut27 of N41 than their controls (0.054–0.072 g). The NCo376 and N41 mutants displayed significantly less percent stalk area discoloured (Fusarium stem rot) (10.6–22.0 %) than their respective parents (N41 - 28.9 % and NCo376 - 30.2 %). Re-isolation of PNG40 from undamaged tissue indicated endophytic colonisation. MutA of NCo376 and Mut1 and Mut23 of N41 were identified for future field studies aimed at curbing Fusarium stem rot and developing endophytic Fusarium-mediated biological control against E. saccharina, as part of an integrated pest management approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akamatsu, H., Itoh, Y., Kodama, M., Otani, H., & Kohmoto, K. (1997). AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology, 87, 967–972.

    Article  CAS  PubMed  Google Scholar 

  • Azevedo, J. L., Maccheroni, W., Pereira, J. O., & Araújo, W. L. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 3, 40–65.

    Article  Google Scholar 

  • Bailey, J. K., Deckert, R., Schweitzer, J. A., & Rehill, B. J. (2005). Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Canadian Journal Botany, 83, 356–361.

    Article  Google Scholar 

  • Batta, Y. A. (2012). The first report on entomopathogenic effect of Fusarium avenaceum (Fries) Saccardo (Hypocreales, Ascomycota) against rice weevil (Sitophilus oryzae L.: Curculionidae, Coleoptera). Journal of Entomological and Acarological Research, 44, 51–55.

    Article  Google Scholar 

  • Bolker, M., Bohnert, H. U., Braun, K. H., Gorl, J., & Kahmann, R. (1995). Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Molecular General Genetics, 248, 547–552.

    Article  CAS  PubMed  Google Scholar 

  • Croft, B. J., & Braithwaite, K. S. (2006). Management of an incursion of sugarcane smut in Australia. Australasian Plant Pathology, 35, 113–122.

    Article  Google Scholar 

  • De la Torre-Hernández, M. E., Rivas-San Vicente, M., Greaves-Fernandez, N., Cruz-Ortega, R., & Plasencia, J. (2010). Fumonisin B1 induces nuclease activation and salicylic acid accumulation through long-chain sphingoid base build-up in germinating maize. Physiological and Molecular Plant Pathology, 74, 337–345.

    Article  Google Scholar 

  • Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A DNA minipreparation: version II. Plant Molecular Biology Reporter, 1, 19–21.

    Article  CAS  Google Scholar 

  • Freeman, S., & Rodriguez, R. J. (1993). Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science, 260, 75–78.

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson, R. L. (1985). Prevalence and virulence of Fusarium spp. associated with stalk rot of corn in Colorado. Plant Disease, 69, 1065–1069.

    Google Scholar 

  • Govender, P., Mcfarlane, S. A., & Rutherford, R. S. (2010). Fusarium species causing Pokkah boeng and their effect on Eldana saccharina Walker (Lepidoptera: Pyralidae). Proceedings of the South African of Sugar Technologists Association, 83, 267–270.

    Google Scholar 

  • Guo, Z., Doll, K., Dastjerdi, R., Karlovsky, P., Dehne, H. W., & Altincicek, B. (2014). Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS ONE, 9, 1–9.

    Google Scholar 

  • Heinze, B. S., Thokoane, L. N., Williams, N. J., Barnes, J. M., & Rutherford, R. S. (2001). The smut-sugarcane interaction as a model system for the integration of marker discovery and gene isolation. Proceedings of the South African of Sugar Technologists Association, 75, 88–93.

    Google Scholar 

  • Keeping, M. G., & Rutherford, R. S. (2004). Resistance mechanisms of South African sugarcane to the African stalk borer Eldana saccharina (Lepidoptera: Pyralidae): a review. Proceedings of the South African Sugar Technologists Association, 78, 307–311.

    Google Scholar 

  • Keeping, M. G., Miles, N., & Sewpersad, C. (2014). Silicon educes impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane. Frontiers in Plant Science, 5, 1–12.

    Article  Google Scholar 

  • Kvedaras, O. L., & Keeping, M. G. (2007). Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomologia Experimentalis et Applicata, 125, 103–110.

    Article  CAS  Google Scholar 

  • Leslie, G. W. (1993). Dispersal behaviour of neonate larvae of the pyralid sugarcane borer Eldana saccharina. Proceedings South African Sugar Technologists Association, 67, 122–126.

    Google Scholar 

  • Logrieco, A., Moretti, A., Fornelli, F., Fogliano, V., Ritieni, A., Caiaffa, M. F., et al. (1996). Fusaproliferin production by Fusarium subglutinans and its toxicity to Artemia salina, SF-9 insect cells, and IARC/LCL 171 human B lymphocytes. Applied Environmental Microbiology, 62, 3378–3384.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma, L. J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., et al. (2013). Fusarium pathogenomics. Annual Reviews of Microbiology, 67, 399–416.

    Article  CAS  Google Scholar 

  • Mahlanza, T., Rutherford, R. S., Snyman, S. J., & Watt, M. P. (2013). In vitro generation of somaclonal variant plants of sugarcane for tolerance to Fusarium sacchari. Plant Cell Reports, 32, 249–262.

    Article  CAS  PubMed  Google Scholar 

  • Mahlanza, T., Rutherford, R. S., Snyman, S. J., & Watt, M. P. (2014). Eldana saccharina (Lepidoptera: Pyralidae) resistance in sugarcane (Saccharum sp.): Effects of Fusarium spp., stalk rind, fibre and nitrogen content. African Entomology, in press.

  • Majumdar, A., Boetel, M. A., & Jaronski, S. T. (2008). Discovery of Fusarium solani as a naturally occurring pathogen of sugarbeet root maggot (Diptera: Ulidiidae) pupae: prevalence and baseline susceptibility. Journal of Invertebrate Pathology, 97, 1–8.

    Article  PubMed  Google Scholar 

  • McFarlane, S. A., Govender, P., & Rutherford, R. S. (2009). Interactions between Fusarium species from sugarcane and the stalk borer, Eldana saccharina (Lepidoptera: Pyralidae). Annals of Applied Biology, 155, 349–359.

    Article  Google Scholar 

  • Mikunthan, G., & Manjunatha, M. (2008). Impact of habitat manipulation on mycopathogen, Fusarium semitectum to Scirtothrips dorsalis and Polyphagotarsonemus latus of chilli. BioControl, 53, 403–412.

    Article  Google Scholar 

  • Ming, R., Moore, P. H., Wu, K. K., D’Hont, A., Glaszmann, J. C., & Tew, T. L. (2006). Sugarcane improvement through breeding and biotechnology. Plant Breeding Reviews, 71, 115–118.

    Google Scholar 

  • Nash, S. N., & Snyder, W. C. (1962). Quantitative estimations by plate counts of propagules of the bean rot Fusarium in field soils. Phytopathology, 73, 458–462.

    Google Scholar 

  • Navarro-Meléndez, A. L., & Heil, M. (2014). Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, Lima bean (Phaseolus lunatus). Journal of Chemical Ecology, 40, 816–825.

    Article  PubMed  Google Scholar 

  • Redman, R. S., Ranson, J. C., & Rodriguez, R. J. (1999). Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Molecular Plant-Microbe Interactions, 12, 969–975.

    Article  CAS  Google Scholar 

  • Rutherford, R. S. (2014). Mechanisms of resistance to pests and pathogens in sugarcane and related crop species. In P. H. Moore & F. C. Botha (Eds.), Sugarcane: physiology, biochemistry, and functional biology (pp. 435–452). New Jersey: Wiley-Blackwell.

    Google Scholar 

  • Sánchez-Rangel, D., Sánchez-Nieto, S., & Plasencia, J. (2012). Fumonisin B1, a toxin produced by Fusarium verticillioides, modulates maize β-1,3-glucanase activities involved in defense response. Planta, 235, 965–978.

    Article  PubMed  Google Scholar 

  • Schultz, B., Rommert, A. K., Dammann, U., Aust, H. J., & Strack, D. (1999). The endophyte–host interaction: a balanced antagonism? Mycological Research, 10, 1275–1283.

    Article  Google Scholar 

  • Singh, S. P., Nigam, A., & Singh, R. K. (2013). Influence of rind hardness on sugarcane quality. American Journal of Plant Sciences, 4, 45–52.

    Article  Google Scholar 

  • Snyman, S. J. (2004). Sugarcane transformation. In I. S. Curtis (Ed.), Transgenic crops of world: essential protocols (pp. 103–114). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Teetor-Barsch, G. H., & Roberts, D. W. (1983). Entomogenous Fusarium species. Mycopathological, 84, 3–16.

    Article  CAS  Google Scholar 

  • Traw, M. B., & Bergelson, J. (2003). Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology, 133, 1367–1375.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Reviews in Phytopathology, 44, 135–162.

    Article  Google Scholar 

  • Varma, A., & Tandan, B. K. (1996). Pathogenicity of three entomogenous fungi against insect pests of sugarcane. Journal of Biological Control, 10, 87–91.

    Google Scholar 

  • Way, M. J., & Goebel, F. R. (2003). Patterns of damage from Eldana saccharina (Lepidoptera: Pyralidae) in the South African sugar industry. Proceedings of the South African of Sugar Technologists Association, 7, 239–240.

    Google Scholar 

  • Webster, T. M., Maher, G. W., & Conlong, G. E. (2005). An integrated pest management system for Eldana saccharina in the Midlands North region of Kwazulu-Natal. Proceedings of the South African Sugar Technologists Association, 79, 347–358.

    Google Scholar 

  • Wenda-Piesik, A., Sun, Z., Grey, W. E., Weaver, D. K., & Morrill, W. L. (2009). Mycoses of wheat stem sawfly (Hymenoptera:Cephidae) larvae by Fusarium spp. isolates. Environmental Entomology, 38, 387–394.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge and thank Nelson Muthusamy for the technical assistance, Nikki Sewpersad for advice on statistical analyses, Malcolm Keeping advice on E. saccharina inoculation, and the South African Sugarcane Research Institute, University of KwaZulu-Natal and National Research Foundation of South Africa (Grants 85573 and 85414) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tendekai Mahlanza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahlanza, T., Rutherford, R.S., Snyman, S.J. et al. Potential of Fusarium sacchari-tolerant mutants in controlling Eldana saccharina and borer-associated Fusarium stem rot in sugarcane. Eur J Plant Pathol 141, 825–837 (2015). https://doi.org/10.1007/s10658-014-0582-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0582-7

Keywords

Navigation